

October, 2024

Python
Programming

Fundamentals

GENPP501

SOFTWARE
DEVELOPMENT

TRAINEE'S MANUAL TRAINEE’S MANUAL

RQF LEVEL 5

TRAINEE'S MANUAL

PYTHON PROGRAMMING FUNDAMENTALS

2024

iii | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

AUTHOR’S NOTE PAGE (COPYRIGHT)

The competent development body of this manual is Rwanda TVET Board ©, reproduce with

permission.

All rights reserved.

● This work has been produced initially with the Rwanda TVET Board with the support

from KOICA through TQUM Project

● This work has copyright, but permission is given to all the Administrative and

Academic Staff of the RTB and TVET Schools to make copies by photocopying or

other duplicating processes for use at their own workplaces.

● This permission does not extend to making of copies for use outside the immediate

environment for which they are made, nor making copies for hire or resale to third

parties.

● The views expressed in this version of the work do not necessarily represent the

views of RTB. The competent body does not give warranty nor accept any liability

● RTB owns the copyright to the trainee and trainer’s manuals. Training providers may

reproduce these training manuals in part or in full for training purposes only.

Acknowledgment of RTB copyright must be included on any reproductions. Any

other use of the manuals must be referred to the RTB.

© Rwanda TVET Board

Copies available from:

o HQs: Rwanda TVET Board-RTB

o Web: www.rtb.gov.rw

o KIGALI-RWANDA

Original published version: October 2024

http://www.rtb.gov.rw/

iv | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

ACKNOWLEDGEMENTS

The publisher would like to thank the following for their assistance in the elaboration of this

training manual:

Rwanda TVET Board (RTB) extends its appreciation to all parties who contributed to the

development of the trainer and trainee’s manuals for the TVET Certificate V in Software

Development, specifically for the module "GENPP501: Python Programming Fundamentals”

We extend our gratitude to KOICA Rwanda for its contribution to the development of these

training manuals and for its ongoing support of the TVET system in Rwanda

We extend our gratitude to the TQUM Project for its financial and technical support in the

development of these training manuals.

We would also like to acknowledge the valuable contributions of all TVET trainers and

industry practitioners in the development of this training manual.

The management of Rwanda TVET Board extends its appreciation to both its staff and the

staff of the TQUM Project for their efforts in coordinating these activities.

v | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

This training manual was developed:

Under Rwanda TVET Board (RTB) guiding policies and directives

Under Financial and Technical support of

vi | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

COORDINATION TEAM
RWAMASIRABO Aimable

MARIA Bernadette M. Ramos

MUTIJIMA Asher Emmanuel

PRODUCTION TEAM

Authoring and Review

SEKABANZA Jean de la Paix

AKIMANA Gabriel

Validation

HAKIZIMANA Evariste

NYANDWI Ronger

Conception, Adaptation and Editorial works

HATEGEKIMANA Olivier

GANZA Jean Francois Regis

HARELIMANA Wilson

NZABIRINDA Aimable

DUKUZIMANA Therese

NIYONKURU Sylvestre

NGENDAHAYO HENRY Gabriel

Formatting, Graphics, Illustrations, and infographics

YEONWOO Choe

SUA Lim

SAEM Lee

SOYEON Kim

WONYEONG Jeong

HAKIZAYEZU Adrien

Financial and Technical support
KOICA through TQUM Project

vii | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

TABLE OF CONTENT

AUTHOR’S NOTE PAGE (COPYRIGHT) --- iii

ACKNOWLEDGEMENTS -- iv

TABLE OF CONTENT --- vii

ACRONYMS --- viii

INTRODUCTION --- 1

MODULE CODE AND TITLE: GENPP501 PYTHON PROGRAMMING FUNDAMENTALS ----------- 2

Learning Outcome 1: Prepare Python Environment -- 3

Key Competencies for Learning Outcome 1: Prepare Python Environment -------------------- 4

Indicative content 1.1: Selection of Python Tools -- 6

Indicative content 1.2: Installation of Python Tools -- 16

Indicative content 1.3: Testing Python Installation --- 27

Learning outcome 1 end assessment -- 30

References -- 37

Learning Outcome 2: Write Basic Python Program -- 38

Key Competencies for Learning Outcome 2: Write basic python program -------------------- 39

Indicative content 2.1: Applying Python Basic Concepts -- 41

Indicative content 2.2: Applying Python Control Structures -------------------------------------- 50

Indicative content 2.3: Applying Functions in Python -- 57

Indicative content 2.4: Applying of Python Collections -- 68

Indicative content 2.5: Performing File Handling -- 79

Learning outcome 2 end assessment -- 90

References -- 94

Learning Outcome 3: Apply Object-Driven In Python --- 95

Key Competencies for Learning Outcome 3: Apply object-driven in python ------------------ 96

Indicative content 3.1: Applying OOP Concepts --- 98

Indicative content 3.2: Applying python Date and Time Concepts ---------------------------- 125

Indicative content 3.3: Applying Python Libraries --- 134

Indicative content 3.4: Applying System Automation -- 140

Learning outcome 3 end assessment -- 155

References -- 158

viii | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

ACRONYMS

API: Application Programming Interface

AWS: Amazon Web Services

CHMOD: Change Mode

CI/CD: Continuous Integration/Continuous Deployment

CSV: Comma-Separated Values

DB: Database

GUI: Graphical User Interface

I/O: Input/Output

IANA: Internet Assigned Numbers Authority

ID: Identification

IDE: Integrated Development Environment

IP: Internet Protocol

KOICA: Korea International Cooperation Agency

OOP: Object-Oriented Programming

OS: Operating System

PIP: Package Installer for Python

RAM: Random Access Memory

RTB: Rwanda TVET Board

SDK: Software Development Kit

SQL: Structured Query Language

SSH: Secure Shell

TQUM Project: TVET Quality Management Project

UTC: Coordinated Universal Time

VM: Virtual Machine

YAML: YAML Ain't Markup Language

1 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

INTRODUCTION

This trainee's manual includes all the knowledge and skills required in Software

Development specifically for the module of "Python Programming Fundamentals". Trainees

enrolled in this module will engage in practical activities designed to develop and enhance

their competencies. The development of this training manual followed the Competency-

Based Training and Assessment (CBT/A) approach, offering ample practical opportunities

that mirror real-life situations.

The trainee's manual is organized into Learning Outcomes, which is broken down into

indicative content that includes both theoretical and practical activities. It provides detailed

information on the key competencies required for each learning outcome, along with the

objectives to be achieved.

As a trainee, you will start by addressing questions related to the activities, which are

designed to foster critical thinking and guide you towards practical applications in the labor

market. The manual also provides essential information, including learning hours, required

materials, and key tasks to complete throughout the learning process.

All activities included in this training manual are designed to facilitate both individual and

group work. After completing the activities, you will conduct a formative assessment,

referred to as the end learning outcome assessment. Ensure that you thoroughly review the

key readings and the 'Points to Remember' section.

2 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

MODULE CODE AND TITLE: GENPP501 PYTHON PROGRAMMING

FUNDAMENTALS

Learning Outcome 1: Prepare python environment

Learning Outcome 2: Write basic python program

Learning Outcome 3: Apply object-driven in python

3 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Learning Outcome 1: Prepare Python Environment

4 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative contents

1.1 Selection of Python tools

1.2 Installation of Python tools

1.3 Testing python installation

Key Competencies for Learning Outcome 1: Prepare Python Environment

Knowledge Skills Attitudes

● Description of

python

programming.

● Identifications of

python tools.

● Identification of

computer system

requirements

● Description of

application of

python

● Installing python

software tools

● Configuring

python virtual

environment

● Running python

version

command

● Checking python

interpreter

● Testing package

manager

● Having

teamwork

spirit ability

● Being critical

thinker

● Being

innovative

● Being attentive

● Being creative

● Problem

solving

● Being practical

oriented

5 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Duration: 15 hrs

Learning outcome 1 objectives:

By the end of the learning outcome, the trainees will be able to:

1. Describe correctly python programming as applied in software development.

2. Identify properly python tools as used in Python programming.

3. Identify properly computer system requirements in line with operating system.

4. Select correctly python tools depending on project to be developed.

5. Install correctly python software tools based on output of python version command.

6. Configure correctly python virtual environment based on operating system.

7. Test correctly python installation based on output of python version command.

Resources

Equipment Tools Materials

● Computer ● IDE (PyCharm)

● Python interpreter

(Latest version)

● Internet

● Electricity

6 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 1.1: Selection of Python Tools

1. You are requested to answer the following questions:

i. Define python

ii. Discuss on benefits of python

iii. Explain characteristics of python

iv. Python programming is applied in different areas, describe each of the

following areas:

a) Data science

b) Software development

c) Automation

d) Data analysis

2. Write your findings on papers

3. Present your findings to the whole class or trainer

4. For more clarification read key reading 1.1.1 and ask questions where necessary.

Key readings 1.1.1. Description of python programming

1. Definition

Python is a high-level, interpreted programming language known for its simplicity and

readability. Created by Guido van Rossum and first released in 1991, Python has

gained immense popularity due to its versatility and wide range of applications.

It is used for:

 web development (server-side),

 software development,

 mathematics,

 System scripting.

2. Uses of Python

Python is used in the following ways:

 Python can be used on a server to create web applications.

 Python can be used alongside software to create workflows.

 Python can connect to database systems. It can also read and modify files.

 Python can be used to handle big data and perform complex mathematics.

Theoretical Activity 1.1.1: Descriptionof python programming

Tasks:

Duration:5 hrs

7 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Python can be used for rapid prototyping, or for production-ready software

development.

3. Comparison between Python Syntax and other programming languages

 Python was designed for readability, and has some similarities to the English

language with influence from mathematics.

 Python uses new lines to complete a command, as opposed to other

programming languages which often use semicolons or parentheses.

 Python relies on indentation, using whitespace, to define scope; such as the

scope of loops, functions and classes. Other programming languages often use

curly-brackets for this purpose.

4. Benefits of python

Python offers a range of advantages that make it a popular choice for developers,

data scientists, and researchers.

4.1. Simplicity and Readability

Python’s clear syntax and structure promote easy reading and writing of code,

which is especially beneficial for beginners.

4.2. Versatility

Python is suitable for various applications, including web development, data

analysis, artificial intelligence, scientific computing, automation, and more.

4.3. Extensive Libraries and Frameworks

Python boasts a rich ecosystem of libraries and frameworks (e.g., NumPy, pandas,

Django, Flask) that simplify complex tasks and speed up development.

4.4. Strong Community Support

A large and active community means extensive support, documentation, and

resources, making it easier for learners to find help and tutorials.

4.5. Cross-Platform Compatibility

Python can run on various operating systems (Windows, macOS, Linux), allowing

for flexibility in development and deployment.

4.6. Dynamic Typing

Variables in Python do not require an explicit declaration of data types, which can

speed up coding and reduce boilerplate.

4.7. Interpreted Language

Python code is executed line by line, which simplifies debugging and makes it

easier to test code snippets.

4.8. Integration Capabilities

Python can easily integrate with other languages (like C, C++, and Java) and

technologies, making it a good choice for projects that require mixed-language

support.

4.9. Object-Oriented and Functional Programming

Python supports both programming paradigms, allowing developers to choose

8 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

the most suitable approach for their projects.

4.10. Rapid Development

The combination of an easy learning curve, extensive libraries, and rapid prototyping

capabilities allows for quicker development cycles.

5. Characteristics of python

Python is a high-level, general-purpose programming language known for its

simplicity, readability, and versatility. Here are some of its key characteristics:

5.1. Readability

Clear syntax: Python uses indentation to define code blocks, making it easy to

read and understand.

English-like keywords: Python uses words like "if", "else", "for", and "while" to

control program flow, making it more intuitive for beginners.

5.2. Versatility

Wide range of applications: Python can be used for web development, data

analysis, scientific computing, machine learning, automation, and more.

Cross-platform compatibility: Python code can run on various operating systems

like Windows, macOS, and Linux.

5.3. Efficiency

 Interpreted language: Python code is executed line by line, making it

slower than compiled languages like C++. However, it's often faster than

other interpreted languages like Ruby.

 Large standard library: Python comes with a rich standard library that

provides modules for various tasks, reducing development time.

5.4. Community and Ecosystem

 Active community: Python has a large and supportive community of

developers, which means you can find plenty of resources, tutorials, and

help online.

 Extensive ecosystem: Python has a vast ecosystem of third-party libraries

and frameworks, such as NumPy, Pandas, TensorFlow, and Django, that

extend its capabilities.

5.5. Other characteristics

 Dynamic typing: Python automatically determines the data type of

variables at runtime.

 Object-oriented programming: Python supports object-oriented

programming paradigms, allowing you to create modular and reusable

code.

 Memory management: Python handles memory management

automatically, freeing developers from the burden of manual memory

allocation and deallocation.

9 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

6. Application of python

The applications of Python programming are diverse and span various fields.

6.1. Data Science

 Data analysis: Python's libraries like NumPy, Pandas, and Matplotlib facilitate

data cleaning, exploration, and visualization.

 Machine learning: Frameworks like TensorFlow and PyTorch enable building

and training complex machine learning models.

 Deep learning: Python is widely used for developing deep neural networks for

tasks like image recognition and natural language processing.

6.2. Software Development

 Web development: Frameworks like Django and Flask streamline the creation

of web applications.

 Desktop applications: Libraries like Tkinter, PyQt, and wxPython allow for

building graphical user interfaces.

 Game development: Pygame is a popular framework for creating simple

games.

6.3. Automation:

 Task automation: Python can automate repetitive tasks, such as sending

emails, downloading files, or interacting with web applications.

 System administration: Python scripts can be used to automate system

management tasks, like backing up data or monitoring system performance.

6.4. Data Analysis:

 Statistical analysis: Python's libraries like SciPy and Stats models provide tools

for statistical analysis and modelling.

 Data mining: Python can be used for discovering patterns and trends in large

datasets.

 Data visualization: Matplotlib and Seaborn allow for creating informative and

visually appealing charts and graphs.

1. Read the task bellow

Ubumwe ltd need to develop a web app that help them in selling their products

online and the system will have capabilities to perform automatic updates while

products are sold and automatic deployment on the side of system administrator.

You are hired as full stack developer responsible for selecting the best tools that will

be used.

Practical Activity 1.1.2: Selecting python tools

Task:

10 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

2. Referring to the provided key reading 1.1.2, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 1.1.2 Selection of python tools

1. Criteria for selecting tools

Selecting the right Python tools for your project can significantly impact your

productivity and the quality of your work.

1.1. Purpose and Requirements

Define the primary goal of your project. Are you building a web application,

performing data analysis, or developing a machine learning model?

1.2. Ease of Use

Consider how user-friendly the tool is. Does it have a vertical learning curve, or can

you get started quickly? Tools with good documentation and community support can

be very helpful.

1.3. Integration

Check if the tool integrates well with your existing systems and workflows. For

example, if you’re using a specific database or framework, ensure the tool supports

it.

1.4. Scalability

Evaluate whether the tool can handle the scale of your project. If you’re working

with large datasets or high-traffic applications, you’ll need tools that can scale

accordingly.

1.5. Performance

Assess the performance of the tool. Some tools may be faster or more efficient than

others, which can be crucial for performance-critical applications.

1.6. Community and Support

A strong community and good support can make a big difference. Look for tools with

active communities, frequent updates, and responsive support.

1.7. Security

Ensure the tool has robust security features, especially if you’re dealing with

sensitive data.

1.8. Cost

Consider the cost of the tool. While some tools are free and open-source, others

may require a subscription or one-time purchase.

1.9. Flexibility

The tool should be flexible enough to adapt to your project’s evolving needs. It

should allow for customization and extension.

1.10. Compatibility

Ensure the tool is compatible with your operating system and other tools you plan to

11 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

use.

N.B: Among the tools you have to select the followings depending on the project to

be developed.

2. Python IDE

An IDE is a software application that provides comprehensive facilities for

programmers to develop software.

Here are some of the most popular Python IDEs:

2.1. Visual Studio Code (VS Code)

Platform

Windows, macOS, Linux

Features

Lightweight, highly customizable, supports various programming languages,

intelligent code completion, debugging, Git integration, and a vast extension

marketplace.

2.2. PyCharm

Platform: Windows, macOS, Linux

Features: Specifically designed for Python development, intelligent code completion,

refactoring, debugging, unit testing, and integration with popular Python

frameworks like Django and Flask.

2.3. Jupiter Notebook

Platform: Web-based, can be used in most browsers

Features: Interactive environment for data analysis, scientific computing, and

machine learning. It's great for exploring data, creating visualizations, and sharing

results.

2.4. Spyder

Platform: Windows, macOS, Linux

Features: Similar to MATLAB, Spyder is a scientific computing environment with a

MATLAB-like interface, suitable for data analysis and scientific programming.

2.5. Sublime Text

Platform: Windows, macOS, Linux

Features: A lightweight, highly customizable text editor with excellent Python

support, including syntax highlighting, code completion, and multiple panes.

2.6. Thonny

Platform: Windows, macOS, Linux

Features: A beginner-friendly IDE designed for teaching programming, with a simple

interface, step-by-step debugging, and a built-in Python interpreter.

3. Python frameworks

Python frameworks provide a pre-built structure and tools to streamline the

development process. They offer reusable code, best practices, and a modular

approach, making it easier to build applications efficiently.

12 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

3.1. Web Development Frameworks

3.1.1. Django:

A full-stack framework known for its rapid development, scalability, and

security features. It's ideal for complex web applications.

3.1.2. Flask

A lightweight, minimalist framework that offers flexibility and control. It's

suitable for smaller projects and APIs.

3.1.3. FastAPI

A modern framework that emphasizes performance, ease of use, and developer

experience. It's built on top of Starlette and Pedantic.

3.2. Data Science and Machine Learning Frameworks

3.2.1. TensorFlow

A popular open-source platform for machine learning, deep learning, and

natural language processing. It's used for building and training neural networks.

3.2.2. PyTorch

Another popular framework for machine learning, known for its flexibility and

ease of use. It's often used for research and prototyping.

3.2.3. Scikit-learn

A machine learning library that provides a simple interface for building and

training models, including classification, regression, clustering, and

dimensionality reduction.

3.3. Scientific Computing and Data Analysis Frameworks

3.3.1. NumPy

A fundamental package for numerical computing, providing multi-dimensional

arrays and matrices, along with mathematical functions.

3.3.2. Pandas

A powerful data analysis library offering data structures like Data Frames and

Series, which make it easy to manipulate and analyse data.

3.3.3. Matplotlib

A plotting library for creating static, animated, and interactive visualizations.

Other Notable Frameworks:

3.3.4. Kivy

A framework for building cross-platform mobile apps, desktop applications, and

web applications using a single codebase.

3.3.5. Twisted

A framework for asynchronous networking, making it suitable for building

network-intensive applications like servers and chat clients.

3.3.6. CherryPy

A minimalistic web framework that emphasizes simplicity and performance.

3.4. Automation libraries in python

13 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Python has several powerful libraries for automation that can help streamline

tasks across various domains.

Here are some of the most popular ones:

3.4.1. Selenium

Use Case: Automating web browsers.

Description: Selenium allows you to control a web browser programmatically. It

can be used for testing web applications and scraping data from websites.

3.4.2. PyAutoGUI

Use Case: GUI automation.

Description: PyAutoGUI lets you simulate mouse movements, clicks, and

keyboard inputs to automate interactions with desktop applications.

3.4.3. requests

Use Case: HTTP requests.

Description: While primarily used for making HTTP requests, it can be leveraged

for automating interactions with web APIs.

3.4.4. BeautifulSoup

Use Case: Web scraping.

Description: BeautifulSoup is used for parsing HTML and XML documents. It

helps in extracting data from web pages.

3.4.5. Pandas

Use Case: Data manipulation and analysis.

Description: Pandas is excellent for automating data processing tasks, such as

cleaning, transforming, and analyzing data in tabular formats.

3.4.6. Airflow

Use Case: Workflow automation.

Description: Apache Airflow is a platform to programmatically author, schedule,

and monitor workflows, making it ideal for batch data processing.

3.4.7. Celery

Use Case: Distributed task queue.

Description: Celery is used for handling asynchronous tasks and scheduling

them, making it great for background job processing.

3.4.8. Paramiko

Use Case: SSH and SFTP.

Description: Paramiko allows you to automate SSH connections and file

transfers, useful for server management and automation.

3.4.9. Fabric

Use Case: SSH command execution.

Description: Fabric is a high-level Python library for executing shell commands

remotely over SSH, making it easier to deploy applications.

3.4.10. pywinauto

14 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Use Case: Windows GUI automation.

Description: This library allows you to automate GUI interactions on Windows

applications.

3.4.11. Schedule

Use Case: Job scheduling.

Description: A simple library for scheduling Python functions to run at specific

intervals.

● Python is a versatile programming language known for its simplicity and

readability.

● Python has several benefits including: Simplicity and Readability, Versatility,

Extensive Libraries and Frameworks, Strong Community Support, Cross-Platform,

Compatibility, Dynamic Typing, Interpreted Language, Integration Capabilities,

Object-Oriented and Functional Programming, Rapid Development.

● Key characteristics of python include: Readability, Versatility, Efficiency and

Community and Ecosystem.

● Python can be used in data science and machine learning by using the following

frameworks: TensorFlow, PyTorch and Scikit-learn.

● Scientific Computing and Data Analysis Frameworks: NumPy, Pandas, Matplotlib.

● In python we can use the following automation Libraries: Selenium, PyAutoGUI,

Requests, Beautiful Soup, Airflow, Celery, Paramiko, Fabric, Pywinauto, And

Schedule.

● Selecting the right Python tools for your project is crucial for productivity and

quality. Start by defining your project’s primary goal, whether it’s web

development, data analysis, or machine learning.

● Consider the tool’s ease of use, integration with existing systems, scalability, and

performance. A strong community and support, robust security features, and cost

are also important factors.

● Ensure the tool is flexible, customizable, and compatible with your operating

system and other tools you plan to use.

● Python support the following IDEs: VS Code, PyCharm, Jupyter Notebook, Spyder,

Sublime Text and Thonny

● Python support the following web frameworks: Django, Flask and FastAPI

● Python can be used in data science and machine learning by using the following

frameworks: TensorFlow, PyTorch and Scikit-learn

 Points to Remember

15 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

● Scientific Computing and Data Analysis Frameworks: NumPy, Pandas and

Matplotlib

● In python we can use the following automation Libraries: Selenium, PyAutoGUI,

requests, BeautifulSoup, Airflow, Celery, Paramiko, Fabric, Pywinauto and

Schedule.

HH ltd want to develop a system that will be used while selling their products online and

performing some automations once new features have added to their website and

performing automatic deployment. You are hired as full stack responsible for selecting the

right tools that will be used to develop that software.

Application of learning 1.1.

16 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 1.2: Installation of Python Tools

1. You are requested to identify the system requirements to install python tools.

2. Write your findings on paper/flipchart

3. Present your findings to the whole class and trainer

4. For more clarification read key reading 1.2.1 and ask questions where necessary.

Key readings 1.2.1.: Identification of Computer System Requirements to

Install Python Tools

The following are requirements to install Python tools in Computer System:

1. Hardware Requirements

Processor: A modern processor (Intel or AMD) with at least dual-core is

recommended for running Python tools efficiently.

For data science, machine learning, or automation tasks, a multi-core processor or

GPU (for TensorFlow or PyTorch) can significantly enhance performance.

Memory (RAM): A minimum of 4 GB of RAM is recommended for general Python

development.

For more resource-intensive tasks like data analytics, machine learning, or web

development, 8 GB to 16 GB of RAM is ideal.

Storage: At least 1 GB of free disk space is needed to install Python and related tools.

For larger projects or when working with large datasets, SSD storage is preferred for

faster read/write speeds.

Graphics Card: If working with AI/ML libraries (e.g., TensorFlow, PyTorch), a

dedicated NVIDIA GPU with CUDA support is beneficial for model training.

2. Software Requirements

Operating System: Python tools can run on Windows, macOS, or Linux. However,

certain tools may have better support on Linux and macOS (e.g., TensorFlow on

GPUs). Ensure that the OS version is up-to-date and compatible with Python versions

(e.g., Windows 10 or higher).

Python Interpreter: The latest version of Python (3.x) should be installed. Some tools

may require specific versions of Python (3.6, 3.8, etc.).

Theoretical Activity 1.2.1: Identification of computer system requirements

Tasks:

Duration: 5 hrs

17 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Package Manager: pip (Python’s package installer) is required for installing most

Python tools. Ensure that pip is installed and up-to-date.

Development Tools: A suitable IDE or text editor (such as PyCharm, VS Code, or

Jupyter Notebook) is required for writing and testing Python code.

If working with web development or DevOps, Node.js, Docker, or Git may be

necessary for additional setup.

1. Read the task bellow

As a full stack developer, you are asked to go to the computer lab to install python

and PyCharm in a computer.

2. Referring to the provided key reading 1.2.2, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 1.2.2 Installation of python software tools

Install python software tools

1. Install python

a. Download the Python Installer or use offline from external storage

 Go to the official Python website: https://www.python.org/downloads/

 Select the latest stable Python version (e.g., Python 3.12).

 Click on the appropriate installer for your Windows system (32-bit or 64-

bit).

b. RUN the Installer

Practical Activity 1.2.2: Installing python software tools

Task:

18 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Double-click the installer file (e.g., python-3.12.exe).

 Follow the on-screen instructions: Check the "Add Python to PATH" option to

make Python accessible from the command line.

 Choose the installation location (default is usually fine).

 Click "Install Now" or "Customize installation" for more advanced options.

 Wait for the installation to complete.

C. Verify the Installation

 Open a command prompt or terminal window.

 Type python --version and press Enter.

19 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 If Python is installed correctly, you should see the installed version number

displayed.

2. Install PyCharm

a. Download PyCharm or use offline from external storage

 Visit the Jet Brains website: https://www.jetbrains.com/pycharm/download/

 Click on the "Download PyCharm" button.

 Choose the appropriate edition for your needs (Community or Professional).

 Select the Windows installer.

b. Run the Installer

 Double-click the downloaded installer file (e.g., pycharm-community-

2023.3.exe).

20 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Follow the on-screen instructions

 Accept the license agreement.

 Choose the installation location (default is usually fine).

 Select the desired components to install (e.g., Python interpreter, web

development tools).

21 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Click "Install" and wait for the installation to complete.

22 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

c. Launch PyCharm

Once the installation is finished, click "Finish" to launch PyCharm.

23 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read key reading 1.2.3. Configuration of python virtual environment

2. Referring to the Key reading 1.2.3 you are requested to go to the computer

lab to configure python virtual environment.

3. Apply safety precautions.

4. Referring to the steps provided in key readings, configure python virtual

environment.

5. Present out the steps to configure python virtual environment.

Key readings 1.2.3 Configuration of python virtual environment

1. Introduction

A Python virtual environment is a tool that helps you create an isolated

environment for your Python projects. This means you can manage

dependencies for each project separately, avoiding conflicts between different

projects’ requirements.

2. Creating a Virtual Environment

 Open your terminal or command prompt.

 Navigate to your project directory.

 Run the following command “python -m venv myenv”

 This will create a directory named myenv containing a standalone Python

installation.

3. Activating the Virtual Environment

 On Windows

Run the following command myenv\Scripts\activate

Practical Activity 1.2.3: Configuring python virtual environment

Task:

24 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 On macOS and Linux

Run the following command source myenv/bin/activate

Once activated, your terminal prompt will change to indicate that you are now

working within the virtual environment.

3. Installing Packages

With the virtual environment activated, you can install packages using pip

“pip install package name”

4. Deactivating the Virtual Environment

To exit the virtual environment, simply run

“deactivate”

5. Deleting the Virtual Environment

If you no longer need the virtual environment, you can delete the myenv

directory

rmdir /s myenv

6. Freeze packages

The "freeze" command in the context of Python virtual environments is used to

create a list of all installed packages and their versions. This is particularly useful

for replicating your environment or sharing your project setup with others.

 Activate your virtual environment if it's not already activated.

 Run the freeze command

25 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

This command will create a file named requirements.txt in your current

directory, containing a list of all installed packages and their versions.

7. To install packages from a requirements.txt file in another environment

This is helpful for setting up identical environments across different machines or

for other developers working on the same project

● To install Python tools, your system should meet certain hardware requirements:

at least a dual-core processor, 4 GB RAM (preferably 8-16 GB for heavier tasks), 1

GB of free disk space, and optionally, a GPU for machine learning.

● On the software side, ensure you have the latest version of Python 3.x, an

appropriate IDE (e.g., VS Code, PyCharm), pip for package management, and

necessary dependencies like C++ build tools or Java for specific libraries

● While installing python we follow these steps:

Step 1: download the Python Installer or use offline from external storage

Step 2: run the installer

Step 3: verify the installation

● while installing PyCharm we follow these steps:

Step 1: Download PyCharm or use offline from external storage

Step 2: Run the installer

Step 3: Launch PyCharm

● Python virtual environments create isolated environments for projects,

preventing dependency conflicts.

● To create a virtual environment, use python -m venv myenv.

● Activate it using myenv\Scripts\activate.

● Install packages with pip install package_name.

● Deactivate using deactivate.

● Freeze dependencies with pip freeze > requirements.txt.

● Install from requirements.txt using pip install -r requirements.txt.

Points to Remember

26 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

HHT LTD Company located in Kicukiro district, wants to develop a web app that will help in

selling their products online and the system will have capabilities to perform automatic

deployment on the side of system administrator. You have been hired as full stack developer

responsible for installing and configuring all python tools that will be needed to develop that

project.

The company will provide all tools, materials and equipment.

Application of learning 1.2.

27 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 1.3: Testing Python Installation

1. Read key reading 1.3.1.

2: As full-stack, you are asked to go to the computer lab to Run python version command,

Check python interpreter and test package manager.

3. Apply safety precautions

4. Referring to the steps provided in key readings, Run python version command, Check

python interpreter and Test package manager.

5. Present out the steps to Run python version command, Check python interpreter and

Test package manager.

Key readings 1.3.1 Testing python installation

To test your Python installation, follow these steps:

Step 1: Check Python Version

 Open a Terminal or Command Prompt:

 Windows: Press Win + R, type cmd, and press Enter.

 macOS: Open Finder, go to Applications, then Utilities, and double-click

on Terminal.

 Linux: Open your terminal application.

 Run the Python Version Command “python –version”

 or, for systems where Python 3 is installed as python3 “python3 –

version”

Expected Output

Step 2: Check Python Interpreter

Open Python Interpreter

In the terminal, type “python” or “python3”

Verify the Prompt

Duration: 5 hrs

Practical Activity 1.3.1: Testing python installation

Task:

28 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Exit the Interpreter

To exit, type “exit()” or press Ctrl + D (macOS/Linux) or Ctrl + Z followed by

Enter (Windows).

Step 3: Test the Package Manager (pip)

Check pip Version

In the terminal, type ”pip –version” or, for systems where pip is installed as

pip3 “pip3 –version”

Expected Output

Test Installing a Package

As a test, you can try installing a simple package, such as Django, openpyxl,

pytz:

pip install Django // for installing django

pip install openpyxl // for installing openpyxl

pip install pytz // for installing the time zone

Expected Output

You should see messages indicating that the package is being downloaded and

installed.

Verify the Package Installation

After installation, you can verify it by running “pip list”

This will display information about the packages that are installed, confirming it

is installed.

29 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

● To Check Python Version run that command in terminal: python --version or

python3 --version

● To Check Python Interpreter run that command in terminal: python or python3

● To Test Package Manager: Check pip version: pip –version and Install a package:

pip install Django

● To Verify installation run: pip list

HHT LTD is software development company located in Kicukiro district, that company

develop different software of institutions, they want to develop a web app that will help STY

ltd in selling their products online and the system will have capabilities to perform

automatic deployment on the side of system admistrator. You have been hired as full stack

developer responsible for testing the python installation and installing required packages

that will be used.

The company will provide all tools, materials and equipment.

Points to Remember

 Application of learning 1.3.

30 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Learning outcome 1 end assessment

I. Circle the letter that corresponding to the right anwer

1. Which of the following is a feature of Python?

a) Case sensitivity

b) Curly-bracket syntax

c) Indentation-based syntax

d) Use of semicolons

2. Python was created by:

a) Guido van Rossum

b) James Gosling

c) Bjarne Stroustrup

d) Dennis Ritchie

3. Which Python framework is known for rapid development and scalability?

a) Flask

b) Django

c) FastAPI

d) CherryPy

4. Python can be used for:

a) Web development

b) Data analysis

c) Machine learning

d) All of the above

5. Which IDE is specifically designed for scientific computing?

a) PyCharm

b) Visual Studio Code

c) Spyder

d) Sublime Text

6. Python is classified as a(n):

a) Compiled language

b) Interpreted language

c) Assembly language

d) Machine language

7. What is the default file extension for Python scripts?

a) .pyc

b) .txt

c) .py

d) .exe

Written assessment

31 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

8. The command to install a Python package using pip is:

a) python install package_name

b) pip install package_name

c) install package_name

d) pip setup package_name

9. Which of the following is NOT a Python web framework?

a) Django

b) Flask

c) NumPy

d) FastAPI

10. In Python, indentation is used to:

a) Declare variables

b) Define the scope of loops and functions

c) Import libraries

d) Comment on the code

11. Which Python library is primarily used for numerical computing?

a) Pandas

b) NumPy

c) Matplotlib

d) Scikit-learn

12. Python’s memory management is handled by:

a) The developer

b) The Python interpreter automatically

c) An external tool

d) Manual memory allocation

13. Which of the following is an example of a Python text editor?

a) PyCharm

b) Jupyter Notebook

c) Sublime Text

d) All of the above

14. Python was first released in:

a) 1989

b) 1991

c) 1995

d) 2000

15. What is the primary use of the TensorFlow library?

a) Web development

b) Machine learning

c) Data visualization

d) Game development

16. Which of the following is NOT a characteristic of Python?

32 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

a) Dynamic typing

b) Complex syntax

c) Object-oriented programming

d) Readability

17. What does the command python --version do?

a) Runs a Python script

b) Displays the current Python version installed

c) Updates Python to the latest version

d) Installs Python on your system

18. Which Python library is widely used for data visualization?

a) Matplotlib

b) TensorFlow

c) Flask

d) Pandas

19. What does IDE stand for in the context of Python?

a) Integrated Development Environment

b) Interactive Development Editor

c) Integrated Debugging Environment

d) Interactive Design Editor

20. Which Python command is used to create a virtual environment?

a) python create venv

b) python -m venv

c) venv create

d) create venv python

21. Which Python framework is designed for asynchronous networking?

a) Kivy

b) Twisted

c) CherryPy

d) Flask

22. In Python, a function is defined using the keyword:

a) func

b) function

c) def

d) define

23. Which IDE is web-based and primarily used for data analysis?

a) PyCharm

b) Jupyter Notebook

c) Visual Studio Code

d) Thonny

24. The command to deactivate a Python virtual environment is:

a) end venv

33 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

b) stop venv

c) deactivate

d) exit venv

25. What type of language is Python?

a) Low-level

b) High-level

c) Mid-level

d) Machine-level

II. Complete the following statements by using one of the keyword listed below;

You can use one keyword once or more.

Display installed packages, Kivy, Large, Data type, IDEs, Delete, Functional,

TensorFlow, Include libraries, Interpreted, pip, Indentation, FastAPI, Pandas,

Beginners

1. Python is an ____________ language, meaning it executes code line by line.

2. The Python package manager is called ____________.

3. Python relies on ____________ to define the scope of loops, functions, and classes.

4. ____________ is a popular Python framework for building APIs, known for its

performance and ease of use.

5. The Python library ____________ is used for data manipulation and analysis.

6. Python’s simple and readable syntax makes it especially beneficial for

____________.

7. The command pip list is used to ____________.

8. ____________ is a Python framework used for developing cross-platform mobile and

desktop applications.

9. Python’s ____________ community provides extensive support, documentation, and

resources.

10. In Python, variables do not require an explicit ____________ declaration.

11. PyCharm and VS Code are examples of ____________ used for Python development.

12. The command rmdir /s myenv is used to ____________ a Python virtual

environment.

13. Python supports both object-oriented and ____________ programming paradigms.

14. The Python library ____________ is widely used for machine learning and deep

learning.

15. In Python, the import statement is used to ____________.

34 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

III. Matching questions

1. Match the IDE in column A with their corresponding primary features in column B

Answers Column A Column B

…….. a) PyCharm (i) Beginner friendly interface

…….. b)Jupyter

Notebook

 (ii) Intelligent code completion

…….. c) Thonny (iii) Interactive environment for

data analysis

…….. d) Visual Studio

Code

 (iv) Lightweight and customizable

2. Match the Python framework in column A with its corresponding description in

column B

Answers Column A Column B

…….. a) Django (i) Framework for cross platform

applications

…….. b) Flask (ii) Lightweight framework for small projects

…….. c) FastAPI (iii) Full stack framework for web

development

…….. d) Kivy (iv) High performance API framework

3. Match the Python library of column A with its corresponding application in column B

Answers Column A Column B

…….. a) NumPy (i) Numerical computing

…….. b) Pandas (ii) Data manipulation

…….. c) Matplotlib (iii) Data visualization

…….. d) Scikit learn (iv) Machine learning

4. Match the Python characteristic in column A with its corresponding feature of column

B

Answers Column A Column B

…….. a) Dynamic typing (i) Clear syntax and structure

…….. b) Readability (ii) No explicit data type declaration

…….. c) Efficiency (iii) Large standard library

…….. d) Versatility (iv) Wide range of applications

5. Match the Python command in column A with its corresponding function of column B

Answers Column A Column B

…….. a) python --version (i) Display the Python version

…….. b) pip install (iii) Install Python packages

…….. c) deactivate (iv) Exit the virtual environment

…….. d) pip list (ii) Display installed packages

35 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

6. Match the Python tool of column A with its corresponding description in column B

Answers Column A Column B

…….. a) PyTorch (i) Computer vision library

…….. b) TensorFlow (ii) Flexible machine learning framework

…….. c) SciPy (iii) Platform for deep learning

…….. d) OpenCV (iv) Scientific computing and statistics

7. Match the Python task in Column A with corresponding the suitable

library/framework in Column B:

…….. Column A Column B

…….. a) Web Development (i) Scikit learn

…….. b) Data Visualization (ii) Matplotlib

…….. c) Machine Learning (iii) Django

…….. d) Task Automation (iv) Python’s standard library

8. Match the Python version command in Column A with its corresponding

corresponding output in Column B:

Answers Column A Column B

…….. a) python --

version

 (i) Displays the Python version number

…….. b) pip show

numpy

 (ii) Shows details of the installed NumPy

package

…….. c) python -m

venv env

 (iii) Creates a new virtual environment

…….. d) pip freeze (iv) Lists installed packages in the virtual

environment

9. Match the Python command in Column A with the corresponding action it

performs in Column B:

Answers Column A Column B

…….. a) import (i) Defines a function

…….. b) def (ii) Imports a module or library

…….. c) print (iv) Outputs data to the console

…….. d) class (iii) Defines a new class

10. Match the following Python versions in Column A with their corresponding key

characteristics in Column B:

Answers Column A Column B

…….. a) Python 2.x (i) Legacy version with different print syntax

…….. b) Python 3.x (ii) Current version with updated syntax

…….. c) Python 3.6+ (iv) Introduced f string formatting

…….. d) Python 3.8+ (iii) Introduced assignment expressions

36 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

HHT LTD Company located in Kicukiro district, wants to develop a web application that will

help in selling their products online and the system will have capabilities to perform

automatic deployment on the side of system administrator and automatic updates once

new feature is added. You have been hired as full stack developer responsible for installing,

configuring all python tools that will be needed to develop that project, testing the python

installation and installing required packages that will be used.

The company will provide all tools, materials and equipment.

Practical assessment

37 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

References

Books

Alpaydin, E. (2020). Introduction to Machine Learning (Adaptive Computation

and Machine Learning series). MIT Press.

Bishop, C. Ms. (2006). Pa ern Recognition and Machine Learning. Springer.

Chollet, F. (2017). Deep Learning with Python. Manning Publications.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep Learning

(Adaptive Computation and Machine Learning series). MIT Press.

Web Links

Foundation, P. S. (2001-2025). downloads/. Retrieved 12 23, 2024, from python.org:

https://www.python.org/downloads/

JetBrains. (2024, 02 20). configuring-python-interpreter.html#view_list. Retrieved 01

13, 2025, from JetBrains: https://www.jetbrains.com/help/pycharm/configuring-

python-interpreter.html#view_list

JetBrains. (2023, 05 03). creating-virtual-environment.html. Retrieved 01 13, 2025,

from JejBrains.com: https://www.jetbrains.com/help/pycharm/creating-virtual-

environment.html

JetBrains. (2023). download/?section=windows. Retrieved 01 13, 2025, from

JetBrains.com: https://www.jetbrains.com/pycharm/download/?section=windows

JetBrains. (2022). quick-start-guide.html#-lnysrf_12. Retrieved 01 13, 2024, from

JetBrains.com: https://www.jetbrains.com/help/pycharm/quick-start-

guide.html#search.

38 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Learning Outcome 2: Write Basic Python Program

39 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative contents

2.1 Applying python basic concepts

2.2 Applying python control structures

2.3 Applying functions in Python

2.4 Applying of Python Collections

2.5 Performing File handling

Key Competencies for Learning Outcome 2: Write basic python program

Knowledge Skills Attitudes

● Description of

python basic

concepts

● Description of

function in python

● Description of

python Collections

● Description of file

Handling libraries

● Applying python

basic concepts

● Applying

conditional

Statements

● Applying looping

Statements

● Using Jump

Statements

● Creating function

in python

● Applying special

purpose functions

● Applying Python

Collections

● Performing

operations on

collection

● Practicing read file

● Performing

write/create and

delete file

● Applying python

best practices

● Having

teamwork spirit

ability while

coding

● Being critical

thinker in logic

of coding

● Being

innovative in

coding

● Being attentive

● Being creative

in discovering

new logics

● Problem solving

● Being practical

oriented

●

40 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Duration: 45 hrs

Learning outcome 2 objectives:

By the end of the learning outcome, the trainees will be able to:

1. Describe correctly python basic concepts based on python standards

2. Describe properly function in python based on python standards

3. Describe correctly python Collections based on python standards

4. Describe properly file Handling libraries based on python standards

5. Apply correctly python basic concepts based on python standards

6. Apply correctly conditional Statements based on python standards

7. Apply correctly looping Statements based on python standards

8. Use correctly Jump Statements based on python standards

9. Create properly function in python based on python standards

10. Apply properly special purpose functions based on python standards

11. Apply correctly Python Collections based on python standards

12. Perform correctly operations on collection based on python standards

13. Practice clearly read file based on python standards

14. Perform correctly write/create and delete file based on python standards

15. Apply correctly python best practices based on python standards

Resources

Equipment Tools Materials

● Computer ● Python

● Python IDE

(Pycharm)

● Internet

41 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 2.1: Applying Python Basic Concepts

1. You are requested to describe the following python basic concepts:

i. Data types

ii. Variable

iii. Comments

iv. Operators

2. Write your findings on paper/flipchart

3. Present your findings to the whole class or trainer

4. For more clarification read key reading 2.1.1 and ask questions where necessary.

Key readings 2.1.1. Description of python basic concepts

In python programming, there are most frequently used concepts, some of them are

described below:

1. Data Types

In Python, a data type defines the type of a value that a variable can hold. Each data

type determines what operations can be performed on that value.

1.1. Built-in data types

Python has several built-in data types, including:

Integers (int): Whole numbers, e.g., 5, -3.

Floating Point Numbers (float): Decimal numbers, e.g., 3.14, -0.001.

Strings (str): Sequences of characters, e.g., "Hello, World!".

Duration: 9 hrs

Theoretical Activity 2.1.1: Description of python basic concepts

Tasks:

42 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Booleans (bool): Represents True or False.

Lists: Ordered, mutable collections, e.g., [1, 2, 3].

Tuples: Ordered, immutable collections, e.g., (1, 2, 3).

Dictionaries (dict): Key-value pairs, e.g., {"name": "Alice", "age": 25}.

Sets: Unordered collections of unique elements, e.g., {1, 2, 3}.

None : Once you have a variable and you didn’t assign any value to it

1.2. Features of mapping data types

Key Features of mapping data types are:

 Unordered: The elements in a mapping are not stored in a specific order.

 Mutable: Elements can be added, modified, or removed after creation.

 Key-value Pairs: Each element consists of a key and a value.

 Efficient Lookup: Values can be quickly retrieved using their corresponding

keys.

Key Characteristics of Boolean datatypes are:

 Binary: Boolean values can only be one of two states: true or false.

 Basic Operations: Boolean operations include AND, OR, NOT, and XOR.

 Conditional Statements: Boolean expressions are used in conditional

statements like if, else, and while to control program flow.

Key Features of sets are:

 Unordered: The elements in a set are not stored in a specific order.

 Mutable: Elements can be added or removed after creation.

 Unique Elements: Sets cannot contain duplicate elements.

 Efficient Membership Testing: Checking if an element exists in a set is

typically very fast.

1.3. Operation that can be done on set datatypes

Operation that can be done on set datatypes includes:

 Union: Combines two sets, including all unique elements from both sets.

 Intersection: Finds the elements that are common to both sets.

 Difference: Finds the elements that are in the first set but not in the second

set.

 Symmetric Difference: Finds the elements that are in either set but not

both.

 Membership Testing: Checks if an element exists in the set.

 Adding/Removing Elements: Adding or removing elements from a set.

2. Variables

Variables in Python are used to store data. You can create a variable by assigning a

value to it using the assignment operator (=).

2.1. Naming rules of python variables.

When naming variables in Python, you must adhere to the following rules:

 Start with a letter or underscore

43 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Variables cannot begin with a number.

 Consist of letters, numbers, and underscores: Only these characters are

allowed in variable names.

 Case-sensitive: Python distinguishes between uppercase and lowercase

letters. For example, myVariable and myvariable are considered different

variables.

 Do not use keywords as variable names, as they have special meanings in

Python.

 Convention: While not strictly enforced, Python has a common naming

convention known as PEP 8. It recommends using lowercase letters with

underscores to separate words (e.g., my_variable).

2.2. Variable declaration

Python does not require explicit variable declaration. You can simply assign a value

to a variable, and the variable will be created automatically.

For example:

x = 10 # Integer

name = "Bob" # String

is_active = True # Boolean

Variable names should be descriptive and can include letters, numbers, and

underscores, but they cannot start with a number.

3. Comments

Comments are used to explain code and are ignored by the Python interpreter. You

can create a single-line comment by using the # symbol:

3.1. The types of comments in python are:

 Single-line comment

 Multi-line comment

3.2. The difference between single-line and multi-line comments:

 single-line comments (#) for short explanations’

 multi-line comments (''' ''' or """ """) for longer notes or documentation.

3.3. To write a comment in python

 In python, we use the hash symbol # to write a single-line comment. This line

is ignored by the Python interpreter.

 In python, you can use triple quotes (''' or """) to write multi-line comment.

This is a single-line comment

x = 5 # Assign 5 to x

For multi-line comments, you can use triple quotes:

"""

This is a

multi-line comment

"""

44 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

4. Operators

Operators are special symbols that perform operations on variables and values.

Common operators in Python include:

4.1. Arithmetic Operators:

+ (Addition)

- (Subtraction)

* (Multiplication)

/ (Division)

// (Floor Division)

% (Modulus)

** (Exponentiation)

4.2. Comparison Operators:

== (Equal to)

!= (Not equal to)

> (Greater than)

< (Less than)

>= (Greater than or equal to)

<= (Less than or equal to)

4.3. Logical Operators:

 And: Returns True if both statements are true

 Or: Returns True if one of the statements is true

 Not: Reverse the result, returns False if the result is true

4.4. Assignment Operators:

= (Assign)

+= (Add and assign)

-= (Subtract and assign)

*= (Multiply and assign)

/= (Divide and assign)

4.5. Python Membership Operators are used to test if a sequence is presented in

an object:

in : Returns True if a sequence with the specified value is present in the object

not in: Returns True if a sequence with the specified value is not present in the

object

45 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

4.6. Python Bitwise Operators are used to compare (binary) numbers :

Operat

or

Nam

e

Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

 ^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero

fill

left

shift

Shift left by pushing zeros in from the right

and let the leftmost bits fall off

>> Signe

d

right

shift

Shift right by pushing copies of the leftmost bit

in from the left, and let the rightmost bits fall

off

1. Read the task bellow

As full-stack, you are asked to go to the computer lab to apply python data types,

variable, python comments and operators while developing a python program that can

perform simple calculation add, substract, multiply, divide and calculate the module and

exponent for two entered numbers by user.

2. Refers to provided key reading 2.1.2, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 2.1.2 Application of python basic concepts

1. Data Types

Application: Using different data types to store and manipulate various kinds of data.

Different data types

integer_value = 42 # Integer

Practical Activity 2.1.2: Applying python basic concepts

Task:

46 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

float_value = 3.14 # Float

string_value = "Hello, Python!" # String

boolean_value = True # Boolean

list_value = [1, 2, 3, 4, 5] # List

tuple_value = (1, 2, 3) # Tuple

dict_value = {"name": "Alice", "age": 30} # Dictionary

set_value = {1, 2, 3} # Set

print(f"Integer: {integer_value}, Float: {float_value}, String: '{string_value}'")

print(f"Boolean: {boolean_value}, List: {list_value}, Tuple: {tuple_value}")

print(f"Dictionary: {dict_value}, Set: {set_value}")

2. Variables

Application: Storing user input and performing operations.

Using variables to store user input

name =str(input("Enter your name: "))

age = int(input("Enter your age: "))

Displaying the stored variables

print(f"Hello, {name}! You are {age} years old.")

3. Comments

Application: Documenting code for better understanding.

This program calculates the area of a rectangle

Function to calculate area

def calculate_area(length, width):

 return length * width

Main execution

length = 5 # Length of the rectangle

width = 3 # Width of the rectangle

area = calculate_area(length, width) # Calculate area

Display the result

print(f"The area of the rectangle is: {area}")

4. Operators

Application: Performing calculations and comparisons.

4.1 A

rithmetic Operators

47 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Arithmetic Operators

a = 10

b = 3

Addition

addition = a + b

print(f"Addition: {a} + {b} = {addition}")

Subtraction

subtraction = a - b

print(f"Subtraction: {a} - {b} = {subtraction}")

Multiplication

multiplication = a * b

print(f"Multiplication: {a} * {b} = {multiplication}")

Division

division = a / b

print(f"Division: {a} / {b} = {division}")

Floor Division

floor_division = a // b

print(f"Floor Division: {a} // {b} = {floor_division}")

Modulus

modulus = a % b

print(f"Modulus: {a} % {b} = {modulus}")

Exponentiation

exponentiation = a ** b

print(f"Exponentiation: {a} ** {b} = {exponentiation}")

4.2 Comparison Operators

Comparison Operators

x = 5

y = 10

Equal to

print(f"{x} == {y}: {x == y}")

48 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Not equal to

print(f"{x} != {y}: {x != y}")

Greater than

print(f"{x} > {y}: {x > y}")

Less than

print(f"{x} < {y}: {x < y}")

Greater than or equal to

print(f"{x} >= {y}: {x >= y}")

Less than or equal to

print(f"{x} <= {y}: {x <= y}")

4.3 Logical Operators

Logical Operators

a = True

b = False

Logical AND

print(f"a and b: {a and b}")

Logical OR

print(f"a or b: {a or b}")

Logical NOT

print(f"not a: {not a}")

4.4 Assignment Operators

Assignment Operators

num = 10

Add and assign

num += 5

print(f"After += 5, num = {num}")

Subtract and assign

num -= 3

print(f"After -= 3, num = {num}")

49 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Multiply and assign

num *= 2

print(f"After *= 2, num = {num}")

Divide and assign

num /= 4

print(f"After /= 4, num = {num}")

● Data types define the kind of values a variable can hold.

● Python supports numeric, sequence, mapping, set, and Boolean data types.

● Variables are containers that store data values.

● Comments are used to explain code.

● Operators are symbols used to perform operations on variables and values.

As full-stack, you are asked to develop a python program that can perform simple

calculation add, substract, multiply, divide and calculate the modulus and exponent for two

entered numbers by user. The developed program has to contain comments for better

explanation.

 Points to Remember

Application of learning 2.1.

50 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 2.2: Applying Python Control Structures

1. Read the task bellow:

As full-stack, you are asked to go to the computer lab to apply if , elif and else

statement while developing a python program that can be used when displaying the

grade of students depending on entered marks as requested by NESA once analysing

marks and student placement.

2. Refers to provided key reading 2.2.1, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 2.2.1. Applying Conditional Statements

1. Introduction

Conditional statements in Python allow you to execute different blocks of code

based on certain conditions.

2. Common frequently used conditional statements

The most common conditional statements are

 If

 else.

 Elif

Here are some applications with program examples:

2.1. Simple if Statement

The if statement in Python is used for decision-making. It allows you to execute a

block of code only if a specified condition is true.

Syntax:

Duration: 9 hrs

Practical Activity 2.2.1: Applying Conditional Statements

Task:

if condition:

 # Code to execute if the condition is True

51 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Key Points:

1. Condition: A logical expression that evaluates to either True or False.
2. Indentation: The code block inside the if statement must be indented, as Python

uses indentation to define blocks of code.

Application: Checking a condition and executing a block of code if the condition is

true.

Simple if statement

age = 18

if age >= 18:

 print("You are eligible to vote.")

2.2. if and else Statement

Application: Executing one block of code if the condition is true, and another if it is

false.

If-else statement

number = 7

if number % 2 == 0:

 print(f"{number} is even.")

else:

 print(f"{number} is odd.")

2.3. if, elif, and else Statement

Application: Checking multiple conditions using elif (short for "else if").

If-elif-else statement

score = 85

if score >= 90:

 grade = 'A'

elif score >= 80:

 grade = 'B'

elif score >= 70:

 grade = 'C'

else:

 grade = 'D'

print(f"Your grade is: {grade}")

52 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

2.4. Nested Conditional Statements

Application: Using conditional statements within other conditional statements.

Nested if statement

temperature = 30

if temperature > 0:

 print("The water is liquid.")

 if temperature > 100:

 print("The water is boiling.")

else:

 print("The water is frozen.")

2.5. Using Logical Operators in Conditions

Application: Combining conditions using logical operators (and, or, not).

Logical operators in conditions

age = 20

has_id = True

if age >= 18 and has_id:

 print("You can enter the club.")

else:

 print("You cannot enter the club.")

1. Read the task bellow:

As full-stack, you are asked to go to the computer lab to apply looping statement

while writing python programs.

2. Refers to provided key reading 2.2.1, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 2.2.2 Application of Looping Statements

1. Introduction

Looping statements in Python allow you to execute a block of code multiple times.

Practical Activity 2.2.2: Applying Looping Statements

Task:

53 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

The two primary types of loops are “ for loops” and “while loops. “

2. Application of “for loop” and “while loop” statements

Here are some applications with sample examples for each:

2.1. for Loop

 Application: Iterating over a sequence (like a list, tuple, or string).

Using a for loop to iterate over a list

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:

 print(f"I like {fruit}.")

 for Loop with range()

Application: Repeating a block of code a specific number of times.

Using a for loop with range()

for i in range(5): # This will iterate from 0 to 4

 print(f"Iteration {i + 1}")

2.2. while Loop

Application: Repeating a block of code as long as a condition is true.

Using a while loop

count = 0

while count < 5:

 print(f"Count is: {count}")

 count += 1 # Increment count

3. Nested Loops

Application: Using a loop inside another loop.

Using nested loops

for i in range(3):

 for j in range(2):

 print(f"Outer loop {i}, Inner loop {j}")

4. Looping with Conditional Statements

Application: Combining loops with conditional statements to filter results.

Using a loop with a conditional statement

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print("Even numbers:")

54 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

for number in numbers:

 if number % 2 == 0:

 print(number)

5. Using break and continue Statements

Application: Controlling the flow of loops using break to exit a loop and continue to

skip to the next iteration.

Using break and continue

for number in range(1, 11):

 if number == 5:

 print("Breaking the loop at number 5.")

 break # Exit the loop when number is 5

 print(number)

print("\nUsing continue:")

for number in range(1, 11):

 if number % 2 == 0:

 continue # Skip even numbers

 print(number) # Print only odd numbers

1. Read the task bellow:

As full-stack, you are asked to go to the computer lab to use jump statement in

looping statement while writing python programs.

2. Refers to provided key reading 2.2.3, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 2.2.3 Using Jump Statements

1. Introduction

Jump statements in Python control the flow of loops and can alter the normal

execution sequence.

2. Common frequently used ump statements

The main jump statements are break, continue, and pass. Here are examples of each:

Practical Activity 2.2.3: Using Jump Statements

Task:

55 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

2.1. Break Statement

Application: Exits the nearest enclosing loop when a specified condition is met.

Example of break

for number in range(1, 11):

 if number == 6:

 print("Breaking the loop at number 6.")

 break # Exit the loop

 print(number)

Output will be: 1, 2, 3, 4, 5

2.2. Continue Statement

Application: Skips the current iteration of the nearest enclosing loop and continues

with the next iteration.

Example of continue

for number in range(1, 11):

 if number % 2 == 0:

 continue # Skip even numbers

 print(number) # Print only odd numbers

Output will be: 1, 3, 5, 7, 9

 Pass Statement

Application: A null operation; it is syntactically required but does nothing when

executed. It's often used as a placeholder.

Example of pass

for number in range(1, 6):

 if number == 3:

 pass # Placeholder for future code

 print(number)

Output will be: 1, 2, 3, 4, 5

Note: All jump statements are written in small letter while developing python

program.

● Conditional statements are used to execute different code blocks based on

specific conditions.

● The if statement is used to execute a block of code if a condition is true.

● The else statement is used to execute a block of code if the if condition is false.

Points to Remember

56 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

● The elif statement is used to test additional conditions if the previous if or elif

conditions are false.

● Indentation is crucial for defining the code blocks within conditional statements.

● Comparison operators (e.g., ==, !=, <, >, <=, >=) are used to create conditions.

● Logical operators (e.g., and, or, not) can be used to combine multiple conditions.

● Nested conditional statements can be used to create more complex decision-

making logic.

● Proper indentation is essential for ensuring correct code execution.

● Testing different conditions can help verify the correctness of conditional

statements.

● Looping statements are used to repeat a block of code multiple times in Python.

● The for loop is used to iterate over a sequence of elements (e.g., lists, tuples,

strings).

● The while loop is used to repeat a block of code as long as a condition is true.

● The break statement can be used to exit a loop prematurely.

● The continue statement can be used to skip the current iteration of a loop and

move to the next one.

● Nested loops can be used to create more complex looping structures.

● Indentation is crucial for defining the code block within loops.

● Break: Terminates the loop entirely when a condition is met.

● Continue: Skips the current iteration and continues with the next one.

● Pass: Does nothing and is useful for maintaining the structure of code where a

statement is syntactically required.

Write a python program that can display all even numbers from 0 to 100 and the program

skip 60 and stops execution if value is equal to 90.

Application of learning 2.2.

57 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 2.3: Applying Functions in Python

1. You are requested to answer the following questions related to the description of

functions in python:

i. Define function in python

ii. Differentiate two (2) types of function in python

iii. Elaborate characteristics and Advantages of using functions in python

2. Write your findings on paper/flipchart

3. Present your findings to the whole class or trainer

4. For more clarification read key reading 2.3.1 and ask questions where necessary.

Key readings 2.3.1. Description of function in python

1. Definition of Function

A function in Python is a block of reusable code that performs a specific task. It is

defined using the def keyword, followed by the function name and parentheses

containing any parameters.

Functions help organize code, making it more modular and easier to understand.

Example of a Function Definition:

def greet(name):

 """This function greets the person passed as a parameter."""

 print(f"Hello, {name}!")

2. Characteristics of Functions

1. Modularity: Functions allow you to break your program into smaller,

manageable pieces.

2. Reusability: Once defined, functions can be reused multiple times throughout

the code.

3. Parameters and Return Values: Functions can accept parameters and return

values, making them flexible.

4. Encapsulation: Functions encapsulate the logic of a task, which can improve

code clarity.

Duration: 9 hrs

Theoretical Activity 2.3.1: Description of function in python

Tasks:

58 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

5. Scope: Variables defined inside a function are local to that function unless

specified otherwise.

3. Advantages of Functions

1. Improved Readability: Breaking code into functions improves readability and

organization.

2. Easier Maintenance: Functions can be modified independently, making

maintenance simpler.

3. Code Reusability: Functions can be reused across different parts of a program

or even in different programs.

4. Debugging: Isolating functionality into functions simplifies debugging since

you can test each function independently.

5. Abstraction: Functions allow you to abstract complex operations, making it

easier to understand and use.

4. Types of Functions

4.1. Built-in Functions

These are functions that are pre-defined in Python and can be used without any

additional code.

Examples include:

 print(): Outputs data to the console.

 len(): Returns the length of an object.

 type(): Returns the type of an object.

 sum(): Returns the sum of a collection of numbers.

Example of a Built-in Function:

numbers = [1, 2, 3, 4, 5]

total = sum(numbers) # Using the built-in sum function

print(f"The total is: {total}")

4.2. User-Defined Functions

These are functions that you define yourself to perform specific tasks. You can create

them using the def keyword.

Example of a User-Defined Function

def add(a, b):

 """This function returns the sum of two numbers."""

 return a + b

result = add(5, 3) # Calling the user-defined function

print(f"The sum is: {result}")

59 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read the task bellow:

As full-stack developer, you are requested to go to the computer lab to create a

function with arguments, default parameter value, passing a list as an argument and

calling a function.

2. Refers to provided key reading 2.3.2, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 2.3.2 Creation of Function in Python

1. Defining a Function

In Python, you can define a function using the def keyword. A function is a block of

reusable code that performs a specific task. It can take inputs (called parameters),

execute code, and optionally return a result.

Example

def greet(name):

 """This function greets the person passed as a parameter."""

 print(f"Hello, {name}!")

2. Arguments

Arguments are the values you pass to a function when calling it. You can define

functions with different types of arguments:

Positional Arguments:

These must be provided in the correct order.

def add(a, b):

 return a + b

result = add(5, 3) # 5 and 3 are positional arguments

print(f"The sum is: {result}")

Practical Activity 2.3.2: Creating function in python

Task:

def function_name(parameters):

 """

 Optional docstring: Describes the function's purpose.

 """

 # Code block to execute

 return value # Optional

60 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Keyword Arguments:

You can specify arguments by name, allowing you to pass them in any order.

def describe_pet(animal_type, pet_name):

 print(f"I have a {animal_type} named {pet_name}.")

describe_pet(pet_name="Buddy", animal_type="dog") # Using keyword arguments

3. Default Parameter Value

You can set default values for parameters in a function. If a value is not provided

during the function call, the default value will be used.

Example:

def greet(name="Guest"):

 """This function greets the person passed as a parameter with a default value."""

 print(f"Hello, {name}!")

greet() # Uses default value

greet("Alice") # Overrides default value

4. Passing a List as an Argument

You can pass a list (or any other collection) as an argument to a function. Inside the

function, you can manipulate it as needed.

Example:

def print_fruits(fruits):

 """This function prints each fruit in the list."""

 for fruit in fruits:

 print(fruit)

fruit_list = ["apple", "banana", "cherry"]

print_fruits(fruit_list) # Passing a list as an argument

5. Calling a Function

To call a function, simply use its name followed by parentheses. If the function

requires arguments, provide them within the parentheses.

Example:

def multiply(a, b):

 return a * b

Calling the function with arguments

result = multiply(4, 5)

print(f"The product is: {result}") # Outputs: The product is: 20

61 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read the task bellow:

As full-stack developer, you are requested to go to the computer lab to apply special

purpose functions such as Lambda, Python Generators, Python Closures, Python

Decorators, Recursive function, and Higher-order function.

2. Refers to provided key reading 2.3.3, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 2.3.3 Applying special purpose functions

1. Lambda Functions

What is a Lambda Function?

Lambda functions are similar to user-defined functions but without a name.

They're commonly referred to as anonymous functions.

Lambda functions are efficient whenever you want to create a function that will only
contain simple expressions – that is, expressions that are usually a single line of a
statement. They're also useful when you want to use the function once.

How to Define a Lambda Function

You can define a lambda function like this:

lambda argument(s) : expression

1. lambda is a keyword in Python for defining the anonymous function.

2. argument(s) is a placeholder, that is a variable that will be used to hold the value you

want to pass into the function expression. A lambda function can have multiple variables

depending on what you want to achieve.

3. expression is the code you want to execute in the lambda function.
Notice that the anonymous function does not have a return keyword. This is because the
anonymous function will automatically return the result of the expression in the function
once it is executed.

Let's look at an example of a lambda function to see how it works. We'll compare it to a
regular user-defined function.

Practical Activity 2.3.3: Applying special purpose functions

Task:

62 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Assume I want to write a function that returns twice the number I pass it. We can define
a user-defined function as follows:

def f(x):

 return x * 2

f(3)

>> 6
Now for a lambda function. We'll create it like this:

lambda x: x * 3
As we explained above, the lambda function does not have a return keyword. As a result,
it will return the result of the expression on its own. The x in it also serves as a
placeholder for the value to be passed into the expression. You can change it to
whatever you want.

Now if you want to call a lambda function, you will use an approach known as
immediately invoking the function. That looks like this:

(lambda x : x * 2)(3)

>> 6

The reason for this is that since the lambda function does not have a name you can
invoke (it's anonymous), you need to enclose the entire statement when you want to call
it.

When Should You Use a Lambda Function?

You should use the lambda function to create simple expressions. For example,
expressions that do not include complex structures such as if-else, for-loops, and so on.

So, for example, if you want to create a function with a for-loop, you should use a user-
defined function.

Common Use Cases for Lambda Functions

How to Use a Lambda Function with Iterables

An iterable is essentially anything that consists of a series of values, such as characters,
numbers, and so on.

In Python, iterables include strings, lists, dictionaries, ranges, tuples, and so on. When
working with iterables, you can use lambda functions in conjunction with two common
functions: filter() and map().

Filter()

63 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

When you want to focus on specific values in an iterable, you can use the filter function.
The following is the syntax of a filter function:

filter(function, iterable)

As you can see, a filter function requires another function that contains the expression or
operations that will be performed on the iterable.

For example, say I have a list such as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Now let's say that I’m
only interested in those values in that list that have a remainder of 0 when divided by 2. I
can make use of filter() and a lambda function.
Firstly I will use the lambda function to create the expression I want to derive like this:

lambda x: x % 2 == 0
Then I will insert it into the filter function like this:

list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

filter(lambda x: x % 2 == 0, list1)

list(filter(lambda x: x % 2 == 0, list1))

>> [2, 4, 6, 8, 10]
Map()
You use the map() function whenever you want to modify every value in an iterable.

map(function, iterable)
For example, let's say I want to raise all values in the below list to the power of 2. I can
easily do that using the lambda and map functions like this:

list1 = [2, 3, 4, 5]

list(map(lambda x: pow(x, 2), list1))

>> [4, 9, 16, 25]

Pandas Series

Another place you'll use lambda functions is in data science when creating a data frame
from Pandas.

A series is a data frame column. You can manipulate all of the values in a series by using
the lambda function.

For example, if I have a data frame with the following columns and want to convert the
values in the name column to lower case, I can do so using the Pandas apply function and
a Python lambda function like this:

import pandas as pd

64 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

df = pd.DataFrame(

 {"name": ["IBRAHIM", "SEGUN", "YUSUF", "DARE", "BOLA", "SOKUNBI"],

 "score": [50, 32, 45, 45, 23, 45]

 }

)

df["lower_name"] = df["name"].apply(lambda x: x.lower())

The apply function will apply each element of the series to the lambda function. The
lambda function will then return a value for each element based on the expression you
passed to it. In our case, the expression was to lowercase each element.

2. Python Generators

Definition: Generators are a type of iterable, like lists or tuples. Unlike lists, they do

not store their contents in memory; instead, they generate items on-the-fly using

the yield keyword.

65 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Example:

Generator function to yield numbers

def count_up_to(n):

 count = 1

 while count <= n:

 yield count

 count += 1

Using the generator

for number in count_up_to(5):

 print(number) # Outputs: 1, 2, 3, 4, 5

3. Python Closures

Definition: A closure is a function that remembers its enclosing lexical scope even

when the program flow is no longer in that scope.

Example:

def outer_function(msg):

 def inner_function():

 print(msg)

 return inner_function

Create a closure

my_greeting = outer_function("Hello, World!")

my_greeting() # Outputs: Hello, World!

4. Python Decorators

Definition: Decorators are a way to modify or enhance functions or methods without

changing their code. They are applied using the @decorator syntax.

Example:

def decorator_function(original_function):

 def wrapper_function():

 print("Wrapper executed before {}".format(original_function.__name__))

 return original_function()

 return wrapper_function

@decorator_function

def display():

 print("Display function executed.")

Calling the decorated function

display()

Outputs:

Wrapper executed before display

Display function executed.

66 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

5. Recursive Function

Definition: A recursive function is a function that calls itself in order to solve a

problem.

Example:

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n - 1)

Calling the recursive function

result = factorial(5)

print(f"The factorial of 5 is: {result}") # Outputs: The factorial of 5 is: 120

6. Higher-Order Function

Definition: A higher-order function is a function that takes one or more functions as

arguments or returns a function as its result.

Example:

def apply_function(func, value):

 return func(value)

Function to square a number

def square(x):

 return x * x

Using a higher-order function

result = apply_function(square, 4)

print(f"The square of 4 is: {result}") # Outputs: The square of 4 is: 16

● Functions are fundamental building blocks in Python programming. They promote

code reuse, readability, and maintainability.

● Built-in Functions: These are functions that are pre-defined in Python and can be

used without any additional code.

● User-Defined Functions: These are functions that you define yourself to perform

specific tasks. You can create them using the def keyword.

Points to Remember

67 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

● Characteristics of Functions include: Modularity, Reusability, Parameters and

Return Values, Encapsulation and Scope.

● Advantages of Functions include: Improved Readability, Easier Maintenance,

Code Reusability, Debugging and Abstraction.

● Creation of Function in Python you can follow the following steps:

Step 1: Defining a Function

Step 2: Arguments

Step 3: Default Parameter Value

Step 4: Passing a List as an Argument

Step 5: Calling a Function

● Special purpose functions offer unique capabilities and can be used to solve

specific problems.

● Lambda functions are concise and often used for short, simple expressions.

● Generators provide efficient ways to generate values on demand.

● Closures can be used to create functions with state.

● Decorators can modify the behavior of other functions without directly changing

their code.

● Recursive functions can be used to solve problems that can be broken down into

smaller, similar sub problems.

● Higher-order functions can be used to create more flexible and reusable code.

Write a Python program that defines a function that generates Fibonacci numbers using a

generator, uses a lambda function to filter even numbers from the generated sequence then

prints the first 10 even Fibonacci numbers.

Application of learning 2.3.

68 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 2.4: Applying of Python Collections

1. You are requested to answer the following questions related to the description of

collections in python:

i. Describe collection Types in Python

ii. Explain Tools from the Collections Module

2. Write your findings on paper/flipchart

3. Present your findings to the whole class or trainer

4. For more clarification read key reading 2.4.1 and ask questions where necessary.

Key readings 2.4.1 Description of python Collections

1. Collection Types in Python

1.1. Lists

Definition: Lists are ordered, mutable collections that can hold a variety of object

types. Elements can be added, removed, or modified.

Syntax:

 Lists are defined using square brackets [].
 Items in the list are separated by commas,.
 A list can contain elements of any data type (e.g., integers, strings, other lists,

etc.).

Example:

fruits = ['apple', 'banana', 'cherry']

fruits.append('orange') # Add an item

print(fruits) # Outputs: ['apple', 'banana', 'cherry', 'orange']

1.2. Tuples

Definition: Tuples are ordered, immutable collections. Once created, their elements

cannot be changed.

Duration: 9 hrs

Theoretical Activity 2.4.1: Description of python Collections

Tasks:

list_name = [item1, item2, item3, ...]

69 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Syntax:

 Tuples are defined using parentheses ().

 Items in the tuple are separated by commas ,.

 Tuples can contain elements of any data type.

 A tuple with a single element requires a trailing comma (value,) to

differentiate it from a regular value.

Example:

colors = ('red', 'green', 'blue')

print(colors[1]) # Outputs: green

1.3. Dictionaries

Definition: Dictionaries are unordered collections of key-value pairs. Keys must be

unique and immutable, while values can be of any type.

Syntax: my_dict = {'key1': 'value1', 'key2': 'value2'}

 Dictionaries are defined using curly braces {}.

 Each key-value pair is separated by a colon :.

 Pairs are separated by commas ,

Example:

student = {'name': 'Alice', 'age': 25}

student['age'] = 26 # Modify value

print(student) # Outputs: {'name': 'Alice', 'age': 26}

1.4. Sets

Definition: Sets are unordered collections of unique elements. They are mutable and

do not allow duplicate values.

Syntax: my_set = {item1, item2, item3, ...}

 Sets are defined using curly braces {} or the set() constructor.

 Items in a set are separated by commas ,.

 Sets do not allow duplicate elements.

 Sets are unordered, so they do not support indexing or slicing.

Example:

unique_numbers = {1, 2, 2, 3}

print(unique_numbers) # Outputs: {1, 2, 3}

1.5. Frozen Set

Definition: A frozen set is an immutable version of a set. Once created, its elements

cannot be changed.

Syntax: my_frozenset = frozenset(iterable)

tuple_name = (item1, item2, item3, ...)

70 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Use the frozenset() constructor to create a frozen set.

 The iterable can be any iterable object like a list, tuple, set, or string.

Example:

immutable_set = frozenset([1, 2, 3, 4])

print(immutable_set) # Outputs: frozenset({1, 2, 3, 4})

1.6. ChainMaps

Definition: A ChainMap groups multiple dictionaries into a single view. It allows for

searching through multiple dictionaries as if they were one.

Syntax: from collections import ChainMap

Example:

from collections import ChainMap

dict1 = {'a': 1, 'b': 2}

dict2 = {'b': 3, 'c': 4}

combined = ChainMap(dict1, dict2)

print(combined['b']) # Outputs: 2 (from dict1)

1.7. Deques

Definition: Deques (double-ended queues) are mutable sequences that allow fast

appends and pops from both ends.

Syntax: from collections import deque

Example:

from collections import deque

my_deque = deque(['a', 'b', 'c'])

my_deque.append('d') # Add to the right

my_deque.appendleft('z') # Add to the left

print(my_deque) # Outputs: deque(['z', 'a', 'b', 'c', 'd'])

2. Specialized Tools from the Collections Module

2.1. Counter

Definition: A Counter is a dictionary subclass for counting hashable objects. It makes

it easy to count occurrences of elements.

Example:

from collections import Counter

count = Counter(['apple', 'banana', 'apple', 'orange', 'banana', 'banana'])

print(count) # Outputs: Counter({'banana': 3, 'apple': 2, 'orange': 1})

2.2. OrderedDict

71 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Definition: An OrderedDict is a dictionary subclass that maintains the order of keys

based on their insertion order.

Example:

from collections import OrderedDict

ordered_dict = OrderedDict()

ordered_dict['apple'] = 1

ordered_dict['banana'] = 2

ordered_dict['cherry'] = 3

print(ordered_dict) # Outputs: OrderedDict([('apple', 1), ('banana', 2), ('cherry', 3)])

2.3. Defaultdict

Definition: A defaultdict is a dictionary subclass that provides a default value for a

nonexistent key. It avoids KeyErrors.

Example:

from collections import defaultdict

default_dict = defaultdict(int) # Default value is 0

default_dict['a'] += 1

default_dict['b'] += 2

print(default_dict) # Outputs: defaultdict(<class 'int'>, {'a': 1, 'b': 2})

1. Read the task bellow:

As full-stack developer, you are requested to go to the computer lab to perform the

following operations on collections:

a) Adding and Removing Elements

b) Accessing and Iterating Over Elements

c) Filtering and Sorting

d) Set Operations and Counting

e) Stack and Queue Operations

2. Refers to provided key reading 2.4.2, perform the task described above.

3. Present your work to the trainer and whole class.

Practical Activity 2.4.2: Performing common operations on collection

Task:

72 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Key readings 2.4.2 Perform common operations on collection

1. Adding and Removing Elements

1.1. Lists

Adding:

fruits = ['apple', 'banana']

fruits.append('cherry') # Add to the end

fruits.insert(1, 'orange') # Add at index 1

print(fruits) # Outputs: ['apple', 'orange', 'banana', 'cherry']

Removing:

fruits.remove('banana') # Remove by value

popped_fruit = fruits.pop() # Remove last item and return it

print(fruits) # Outputs: ['apple', 'orange']

print(f"Popped fruit: {popped_fruit}") # Outputs: Popped fruit: cherry

1.2. Dictionaries

Adding:

student = {'name': 'Alice'}

student['age'] = 25 # Add new key-value pair

print(student) # Outputs: {'name': 'Alice', 'age': 25}

Removing:

del student['age'] # Remove key-value pair by key

print(student) # Outputs: {'name': 'Alice'}

2. Accessing and Iterating Over Elements

2.1. Lists

Accessing elements

print(fruits[0]) # Outputs: apple

Iterating over elements

for fruit in fruits:

 print(fruit)

2.2. Dictionaries

Accessing values

print(student['name']) # Outputs: Alice

Iterating over keys and values

for key, value in student.items():

 print(f"{key}: {value}")

73 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

3. Filtering and Sorting

3.1. Sorting

Sorting Lists

1. Using sorted() (Returns a New Sorted List)

numbers = [5, 2, 9, 1, 7]
Ascending Order
ascending = sorted(numbers)
print("Ascending:", ascending) # Output: [1, 2, 5, 7, 9]
Descending Order
descending = sorted(numbers, reverse=True)
print("Descending:", descending) # Output: [9, 7, 5, 2, 1]

2. Using .sort() (Modifies the List In-Place)

numbers = [5, 2, 9, 1, 7]
Sort in Ascending Order
numbers.sort()
print("Ascending:", numbers) # Output: [1, 2, 5, 7, 9]
Sort in Descending Order
numbers.sort(reverse=True)
print("Descending:", numbers) # Output: [9, 7, 5, 2, 1]

Sorting Tuples

Tuples are immutable, so you can only use sorted() (returns a new sorted list).

numbers = (5, 2, 9, 1, 7)
ascending = sorted(numbers) # Output: [1, 2, 5, 7, 9]
descending = sorted(numbers, reverse=True) # Output: [9, 7, 5, 2, 1]
print("Ascending:", ascending)
print("Descending:", descending)

Sorting Dictionaries

You can sort dictionaries based on keys or values.

1. Sorting by Keys

students = {'Alice': 85, 'Bob': 92, 'Charlie': 78}
Ascending by key
ascending = dict(sorted(students.items()))
print("Ascending by keys:", ascending)
Descending by key
descending = dict(sorted(students.items(), reverse=True))

74 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

print("Descending by keys:", descending)

2. Sorting by Values

Ascending by value
ascending = dict(sorted(students.items(), key=lambda x: x[1]))
print("Ascending by values:", ascending)
Descending by value
descending = dict(sorted(students.items(), key=lambda x: x[1], reverse=True))
print("Descending by values:", descending)

Sorting Sets

Sets are unordered collections, so you must convert them into a list first.

numbers = {5, 2, 9, 1, 7}
ascending = sorted(numbers) # [1, 2, 5, 7, 9]
descending = sorted(numbers, reverse=True) # [9, 7, 5, 2, 1]
print("Ascending:", ascending)
print("Descending:", descending)

Sorting Custom Objects

If you have a list of dictionaries or objects, use the key parameter.

students = [
 {"name": "Alice", "score": 85},
 {"name": "Bob", "score": 92},
 {"name": "Charlie", "score": 78}
]

Sort by score (ascending)
ascending = sorted(students, key=lambda x: x["score"])
print("Ascending:", ascending)

Sort by score (descending)
descending = sorted(students, key=lambda x: x["score"], reverse=True)
print("Descending:", descending)

75 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Summary

Collection
Type

Sorting Method Ascending Descending

List .sort() (modifies) or
sorted()

sorted(list) sorted(list,
reverse=True)

Tuple sorted() sorted(tuple) sorted(tuple,
reverse=True)

Dictionary
(Keys)

sorted(dict.items()) sorted(dict.items()) sorted(dict.items(),
reverse=True)

Dictionary
(Values)

sorted(dict.items(),
key=lambda x: x[1])

sorted(dict.items(),
key=lambda x: x[1])

sorted(dict.items(),
key=lambda x: x[1],
reverse=True)

Set sorted(set) sorted(set) sorted(set,
reverse=True)

Custom
Objects

sorted(objects,
key=lambda x:
x['property'])

sorted(objects,
key=lambda x:
x['property'])

sorted(objects,
key=lambda x:
x['property'],
reverse=True)

3.2. Filtering

Filtering involves selecting specific elements from collections (list, tuple, dictionary)
based on a condition. Below is how you can filter these collections effectively.

1. Filtering a List

Using filter():

numbers = [1, 2, 3, 4, 5, 6]

Filter even numbers
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
print(even_numbers) # Output: [2, 4, 6]

Using List Comprehension:

Filter even numbers
even_numbers = [x for x in numbers if x % 2 == 0]
print(even_numbers) # Output: [2, 4, 6]

2. Filtering a Tuple

Using filter():

numbers = (1, 2, 3, 4, 5, 6)

76 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Filter even numbers
even_numbers = tuple(filter(lambda x: x % 2 == 0, numbers))
print(even_numbers) # Output: (2, 4, 6)

Using Generator Expression:

Filter even numbers
even_numbers = tuple(x for x in numbers if x % 2 == 0)
print(even_numbers) # Output: (2, 4, 6)

3. Filtering a Dictionary

Filtering Based on Values:

data = {"a": 1, "b": 2, "c": 3, "d": 4}

Keep only items with values greater than 2
filtered_data = {k: v for k, v in data.items() if v > 2}
print(filtered_data) # Output: {'c': 3, 'd': 4}

Filtering Based on Keys:

Keep only keys that start with 'b'
filtered_data = {k: v for k, v in data.items() if k.startswith('b')}
print(filtered_data) # Output: {'b': 2}

Filtering Both Keys and Values:

Keep items where the key starts with 'c' and the value is greater than 2
filtered_data = {k: v for k, v in data.items() if k.startswith('c') and v > 2}
print(filtered_data) # Output: {'c': 3}

Comparison of Filtering Techniques

Collection Method Example

List filter() Filter even numbers: filter(lambda x: x % 2 == 0,
numbers)

List List Comprehension [x for x in numbers if x % 2 == 0]

Tuple filter() tuple(filter(lambda x: x % 2 == 0, numbers))

Tuple Generator Expression tuple(x for x in numbers if x % 2 == 0)

Dictionary Dictionary
Comprehension

{k: v for k, v in data.items() if v > 2}

77 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Each method has its use case:

 Use filter() for functional-style filtering.
 Use comprehensions for a concise, readable approach.
 For dictionaries, comprehensions are the primary way to filter based on keys or

values.

4. Set Operations and Counting

4.1. Sets

Basic Set Operations:

set_a = {1, 2, 3}

set_b = {3, 4, 5}

Union

union_set = set_a | set_b # or set_a.union(set_b)

print(union_set) # Outputs: {1, 2, 3, 4, 5}

Intersection

intersection_set = set_a & set_b # or set_a.intersection(set_b)

print(intersection_set) # Outputs: {3}

Difference

difference_set = set_a - set_b # or set_a.difference(set_b)

print(difference_set) # Outputs: {1, 2}

4.2. Counting Elements (Using Counter):

from collections import Counter

elements = ['apple', 'banana', 'apple', 'orange', 'banana', 'banana']

count = Counter(elements)

print(count) # Outputs: Counter({'banana': 3, 'apple': 2, 'orange': 1})

5. Stack and Queue Operations

5.1. Stack Operations (Using Lists)

Stack: LIFO (Last In, First Out)

stack = []

Push

stack.append('A')

stack.append('B')

stack.append('C')

Pop

78 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

top_element = stack.pop()

print(top_element) # Outputs: C

print(stack) # Outputs: ['A', 'B']

Queue Operations (Using deque)

Queue: FIFO (First In, First Out)

from collections import deque

queue = deque()

Enqueue

queue.append('A')

queue.append('B')

queue.append('C')

Dequeue

first_element = queue.popleft()

print(first_element) # Outputs: A

print(queue) # Outputs: deque(['B', 'C'])

● Python provides various built-in collection types, each serving different purposes:

Lists, Tuples, dictionaries, sets, frozen sets, ChainMaps and deques.

● The collections module enhances functionality with specialized tools like: Counter,

OrderedDict and defaultdict.

● These are common operations you can perform on various collection types in

Python. Lists, dictionaries, sets: Adding and Removing Elements, Accessing and

Iterating over Elements, Filtering and Sorting, Set Operations and Counting and

Stack and Queue Operations.

● Specialized tools such as deques provide powerful ways to manage and

manipulate data, making Python a versatile language for handling collections.

Write a Python program that creates a list of numbers, filters out even numbers, sorts the

remaining numbers in ascending order and then prints the sorted list.

 Points to Remember

Application of learning 2.4.

79 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 2.5: Performing File Handling

1. You are requested to answer the following questions related to the description of

file handling libraries in python:

i.Describe the following file handling libraries

a) Os module

b) Pathlib module

c) Shutil module

d) Pandas library

2. Write your findings on paper/flipchart

3. Present your findings to the whole class or trainer

4. For more clarification read key reading 2.5.1 and ask questions where necessary.

Key readings 2.5.1. Description of file Handling libraries

File handling libraries in Python, include os, pathlib, shutil, and pandas. Each library

serves different purposes and offers various functionalities for file and directory

manipulation.

1. os Module

Description: The os module provides a way to use operating system-dependent

functionality like reading or writing to the file system, working with directories, and

handling environment variables.

Common Functions:

 os.listdir(path): Returns a list of files and directories in the specified path.

 os.mkdir(path): Creates a directory at the specified path.

 os.remove(path): Deletes a file at the specified path.

 os.rename(src, dst): Renames a file or directory.

 os.path: Contains functions to manipulate pathnames

(e.g., os.path.join, os.path.exists).

Duration: 9 hrs

Theoretical Activity 2.5.1: Description of file handling libraries

Tasks:

80 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Example:

import os

List files in the current directory

files = os.listdir('.')

print(files)

Create a new directory

os.mkdir('new_folder')

Remove a file (make sure it exists)

os.remove('file_to_delete.txt')

2. pathlib Module

Description: The pathlib module offers an object-oriented approach to file system

paths. It allows easier manipulation of paths and provides a more intuitive syntax.

Common Classes and Methods:

 Path: Represents a filesystem path.

 Path.exists(): Checks if the path exists.

 Path.mkdir(): Creates a new directory.

 Path.rmdir(): Removes a directory.

 Path.read_text(): Reads the contents of a text file.

Example:

from pathlib import Path

Create a Path object

path = Path('example.txt')

Check if the file exists

if path.exists():

 print(f"{path} exists.")

else:

 # Create a new file

 path.write_text("Hello, World!")

Read the file

content = path.read_text()

print(content)

81 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

3. shutil Module

Description: The shutil module provides a higher-level interface for file operations,

particularly for copying and removing files and directories. It simplifies tasks like file

and directory management.

Common Functions:

 shutil.copy(src, dst): Copies a file from src to dst.

 shutil.move(src, dst): Moves a file or directory from src to dst.

 shutil.rmtree(path): Deletes an entire directory tree.

 shutil.make_archive(base_name, format, root_dir): Creates a zip or tar archive.

Example:

import shutil

Copy a file

shutil.copy('source.txt', 'destination.txt')

Move a directory

shutil.move('old_directory', 'new_directory')

Remove a directory tree

shutil.rmtree('directory_to_delete')

4. pandas Library

Description: While primarily a data analysis library, pandas provides powerful tools

for reading from and writing to various file formats, including CSV, Excel, JSON, and

more. It simplifies data manipulation and analysis.

Common Functions:

 pandas.read_csv(filepath): Reads a CSV file into a DataFrame.

 DataFrame.to_csv(filepath): Writes a DataFrame to a CSV file.

 pandas.read_excel(filepath): Reads an Excel file into a DataFrame.

 DataFrame.to_excel(filepath): Writes a DataFrame to an Excel file.

Example:

import pandas as pd

Read a CSV file into a DataFrame

df = pd.read_csv('data.csv')

Display the first few rows

print(df.head())

Write DataFrame to a new CSV file

df.to_csv('new_data.csv', index=False)

82 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read the task bellow:

As full-stack developer, you are requested to go to the computer lab to perform the

following operations on file:

a) Open a File

b) Read File Permissions

2. Refers to provided key reading 2.5.2, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 2.5.2 Practice to open and read file

Practice reading a file in Python, covering how to open a file and check file

permissions.

1. Open a File

To open a file in Python, you use the built-in open() function. This function takes at

least one argument: the path to the file. You can also specify a second argument to

indicate the mode in which you want to open the file.

Common File Modes:

 'r': Read (default mode) - Opens a file for reading.

 'w': Write - Opens a file for writing (creates a new file or truncates an existing

file).

 'a': Append - Opens a file for appending (data will be written at the end).

 'b': Binary - Opens a file in binary mode.

 't': Text - Opens a file in text mode (default).

Example:

Open a file for reading

file_path = 'example.txt' # Ensure this file exists before running

try:

 with open(file_path, 'r') as file:

 content = file.read() # Read the entire file

 print(content) # Print the file content

except FileNotFoundError:

 print(f"The file {file_path} does not exist.")

except IOError:

 print("An error occurred while reading the file.")

Practical Activity 2.5.2: Practicing open and read file

Task:

83 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

2. Read File Permissions

Before opening a file, you may want to check its permissions to ensure you have the

appropriate access rights. You can use the os module to check file permissions.

Example:

import os

file_path = 'example.txt' # Ensure this file exists

Check if the file exists

if os.path.exists(file_path):

 # Get file permissions

 permissions = os.stat(file_path).st_mode

 # Check read permission

 can_read = bool(permissions & 0o400) # Owner can read

 can_write = bool(permissions & 0o200) # Owner can write

 can_execute = bool(permissions & 0o100) # Owner can execute

 print(f"Read permission: {can_read}")

 print(f"Write permission: {can_write}")

 print(f"Execute permission: {can_execute}")

else:

 print(f"The file {file_path} does not exist.")

1. Read the task bellow:

As full-stack developer, you are requested to go to the computer lab to perform the

following operations on file:

 Write

 Create

 Delete file

2. Refers to provided key reading 2.5.3, perform the task described above.

3. Present your work to the trainer and whole class.

Practical Activity 2.5.3: Performing write/create and delete file

Task:

84 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Key readings 2.5.3 Performing write/create and delete file

1. Create a New File

To create a new file in Python, you can use the open() function with the 'w' (write)

or 'x' (exclusive creation) mode. The 'w' mode will create a new file or overwrite an

existing file, while 'x' will raise an error if the file already exists.

Example:

Create a new file

file_path = 'new_file.txt'

try:

 with open(file_path, 'w') as file:

 file.write("This is a new file created with Python.\n")

 print(f"File {file_path} created successfully.")

except IOError:

 print("An error occurred while creating the file.")

2. Write to an Existing File

To write to an existing file, you can open it in 'a' (append) or 'w' mode. The 'a' mode

will add content to the end of the file without deleting the current content.

Example:

Write to an existing file

existing_file_path = 'new_file.txt'

try:

 with open(existing_file_path, 'a') as file:

 file.write("Appending new content to the existing file.\n")

 print(f"Content appended to {existing_file_path} successfully.")

except IOError:

 print("An error occurred while writing to the file.")

3. Remove a File

To delete a file, you can use the os.remove() function from the os module.

Example:

import os

Remove a file

file_to_remove = 'new_file.txt'

try:

 os.remove(file_to_remove)

85 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 print(f"File {file_to_remove} deleted successfully.")

except FileNotFoundError:

 print(f"The file {file_to_remove} does not exist.")

except PermissionError:

 print(f"Permission denied to delete the file {file_to_remove}.")

except Exception as e:

 print(f"An error occurred: {e}")

4. Delete a Folder

To delete a folder, you can use os.rmdir() for empty directories or shutil.rmtree() for

directories that contain files.

Example (Deleting an Empty Folder):

Delete an empty folder

folder_to_remove = 'empty_folder'

try:

 os.rmdir(folder_to_remove)

 print(f"Folder {folder_to_remove} deleted successfully.")

except FileNotFoundError:

 print(f"The folder {folder_to_remove} does not exist.")

except OSError:

 print(f"The folder {folder_to_remove} is not empty or cannot be deleted.")

except Exception as e:

 print(f"An error occurred: {e}")

Example (Deleting a Non-Empty Folder):

import shutil

Delete a non-empty folder

non_empty_folder = 'non_empty_folder'

try:

 shutil.rmtree(non_empty_folder)

 print(f"Folder {non_empty_folder} deleted successfully.")

except FileNotFoundError:

 print(f"The folder {non_empty_folder} does not exist.")

except Exception as e:

 print(f"An error occurred: {e}")

86 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read the task bellow:

As full-stack developer, you are requested to go to the computer lab to apply the following:

i. Readability and Style

ii. Use of Built-in Features

iii. Efficiency and Memory Usage

iv. Error Handling and Testing

2. Refers to provided key reading 2.5.4, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 2.5.4 Application of python best practices

Best practices for writing Python code, focusing on readability and style, the use of

built-in features, efficiency and memory usage, and error handling and testing.

1. Readability and Style

PEP 8: Follow the Python Enhancement Proposal (PEP) 8 style guide, which outlines

conventions for writing clean and readable code.

 Indentation: Use 4 spaces per indentation level.

 Line Length: Limit lines to 79 characters.

 Naming Conventions: Use descriptive variable and function names.

Use snake_case for variables and functions, and CamelCase for classes.

Example:

def calculate_area(radius):

 """Calculate the area of a circle given its radius."""

 return 3.14 * radius ** 2

 Docstrings: Use docstrings to describe the purpose of functions and classes.

This helps others understand your code.

2. Use of Built-in Features

Leverage Built-in Functions: Use Python’s built-in functions and libraries whenever

possible, as they are optimized and thoroughly tested.

Example:

Instead of manually calculating the sum of a list

numbers = [1, 2, 3, 4, 5]

total = sum(numbers) # Use built-in sum function

Practical Activity 2.5.4: Applying python best practices

Task:

87 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

List Comprehensions: Use list comprehensions for creating lists in a concise and

readable way.

Example:

squares = [x ** 2 for x in range(10)] # List comprehension for squares

3. Efficiency and Memory Usage

Use Generators: When working with large datasets, use generators to save memory.

Generators yield items one at a time and do not load everything into memory.

Example:

def generate_numbers(n):

 for i in range(n):

 yield i * 2

Using the generator

for number in generate_numbers(10):

 print(number)

Avoid Unnecessary Copies: Be mindful of operations that create unnecessary copies

of data. For instance, use in-place modifications where applicable.

Example:

Instead of creating new lists

my_list = [1, 2, 3]

my_list.append(4) # Modify in place

4. Error Handling and Testing

Use Exceptions: Use try and except blocks for error handling to make your code

robust. Handle specific exceptions rather than using a bare except.

Example:

try:

 result = 10 / 0

except ZeroDivisionError:

 print("You cannot divide by zero.")

Assertions: Use assertions to enforce conditions that must be true for your program

to work correctly.

Example:

def divide(a, b):

 assert b != 0, "The denominator cannot be zero."

 return a / b

Unit Testing: Write unit tests using the unittest or pytest framework to ensure that

your code works as expected. Testing helps catch bugs early and improves code

reliability.

88 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Example:

import unittest

def add(a, b):

 return a + b

class TestMathFunctions(unittest.TestCase):

 def test_add(self):

 self.assertEqual(add(1, 2), 3)

if __name__ == "__main__":

 unittest.main()

Summary

By following these best practices, you enhance the quality of your Python code:

 Readability and Style: Adhere to PEP 8 guidelines and use meaningful names

and docstrings.

 Use of Built-in Features: Take advantage of Python’s built-in functions and

libraries for optimized performance.

 Efficiency and Memory Usage: Use generators and avoid unnecessary copies

to manage memory effectively.

 Error Handling and Testing: Implement robust error handling and write unit

tests to ensure code reliability.

● Os used for interacting with the operating system and file system.

● Pathlib used for an object-oriented approach to path manipulation.

● Shutil used for high-level file operations such as copying and moving files.

● Pandas used for reading and writing data in various formats, primarily used for

data analysis.

● Creating a New File: Use open (file_path, 'w') or open(file_path, 'x') to create a

new file.

● Writing to an Existing File: Use open (file_path, 'a') to append or 'w' to overwrite.

● Removing a File: sUse os.remove () to delete a file.

● Deleting a Folder: Use os.rmdir () for empty directories and shutil.rmtree() for

non-empty directories.

Points to Remember

89 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

● Adhering to Python best practices can improve code quality, readability, and

maintainability.

● Following PEP 8 guidelines promotes consistent coding style.

● Using built-in features can make code more concise and efficient.

● Writing efficient code can reduce resource consumption.

● Proper error handling can prevent unexpected program failures.

● Testing can help identify and fix bugs early in the development process.

● Regular code reviews can help improve coding practices and catch potential

issues.

Develop a python program that can create a file in excel format "list of TVET schools" and

attach the following as header (District,School name,Trade,Number of students) and attach

sample data in row 1 (Your_district, Your_schoolname, SWD,23). The created file have to be

saved on desktop of your computer in directory works if that directory don't exist it has to

create it before saving that file.

Application of learning 2.5.

90 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Learning outcome 2 end assessment

I.Circle the letter that correspond to the right answer:

1. What is the correct syntax to create a list in Python?

A) list = (1, 2, 3)

B) list = [1, 2, 3]

C) list = {1, 2, 3}

D) list = <1, 2, 3>

2. Which of the following is an immutable data type in Python?

A) List

B) Dictionary

C) Tuple

D) Set

3. What will the output of the following code be?

x = 5

y = 10

print(x > y)

A) True

B) False

C) 5

D) 10

4. Which operator is used for exponentiation in Python?

A) ^

B) **

C) //

D) ***

5. Which keyword is used to define a function in Python?

A) function

B) def

C) define

D) func

6. What does the 'break' statement do in a loop?

A) Skips the current iteration

B) Exits the loop

C) Repeats the loop

D) Terminates the program

7. How do you create a dictionary in Python?

A) dict = [key: value]

B) dict = {key: value}

Theoretical assessment

91 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

C) dict = (key: value)

D) dict = <key: value>

8. Which function is used to read a CSV file into a DataFrame using pandas?

A) pd.read_csv()

B) pd.load_csv()

C) pd.import_csv()

D) pd.open_csv()

9. What will len([1, 2, 3]) return?

A) 2

B) 3

C) 4

D) None

10. Which of the following is a built-in function in Python?

A) print()

B) show()

C) display()

D) output()

11. In Python, what data type is used to represent True or False values?

A) int

B) float

C) bool

D) str

12. What will the output of the following code?

print("Hello, World!"[7])

A) H

B) e

C) W

D) o

13. Which of the following is NOT a valid way to comment in Python?

A) # This is a comment

B) /* This is a comment */

C) """ This is a comment """

D) #!

14. What does the 'continue' statement do in a loop?

A) Exits the loop

B) Skips to the next iteration

C) Restarts the loop

D) Ends the program

15. Which of the following is used to create a set in Python?

A) []

B) ()

92 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

C) {}

D) <>

16. What is the correct way to define a lambda function in Python?

A) lambda x, y: x + y

B) function x, y: x + y

C) def x, y: x + y

D) x, y -> x + y

17. What is the output of print(type(3.14))?

A) <class 'int'>

B) <class 'float'>

C) <class 'str'>

D) <class 'bool'>

18. Which of the following statements is used to import the os module?

A) import os

B) include os

C) using os

D) require os

19. What will the following code output?

x = 20

if x < 10:

print("Small")

else:

print("Large")

A) Small

B) Large

C) 20

D) None

20. Which method can be used to add an item to a list in Python?

A) add()

B) append()

C) insert()

D) Both B and C

II.Complete thefollowing statements by correct word, operator, or keword from the listed

ones :

(function, ==, loop,lambda, os, defaultdict, break, tuple, open, dictionary)

1. A ________ is a block of reusable code that performs a specific task in Python.

2. The __________ operator is used to compare two values for equality.

3. In Python, a __________ allows you to iterate over a sequence.

4. A __________ function can take any number of arguments but can only have one

expression.

93 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

5. The __________ module provides a way to use operating system-dependent

functionality in Python.

6. A __________ is a dictionary subclass that provides a default value for a non-existent

key.

7. The __________ statement is used to exit the nearest enclosing loop in Python.

8. A __________ is an immutable collection that can hold a variety of object types.

9. The __________ function is used to read the contents of a text file.

10. A __________ is a collection of key-value pairs where keys must be unique.

i. Respond to the followings by True or False

1. A list in Python is immutable.

2. A function in Python can return multiple values.

3. The 'else' clause can be used with a 'for' loop.

4. The pandas library is primarily used for file handling.

5. Sets in Python can contain duplicate elements.

6. The 'pass' statement in Python does nothing when executed.

7. You can use the 'with' statement for file handling in Python.

8. A frozen set is a mutable version of a set.

9. The 'elif' keyword is used to check multiple conditions in Python.

10. Variables in Python do not require a declaration before use.

III.Match the following Python data types with their corresponding descriptions:

ANSWER Data Type Description

…… A. List 1. Unordered collection of unique elements

…… B. Tuple 2. Ordered, mutable collection

…… C. Dictionary 3. Key-value pairs

…… D. Set 4. Ordered, immutable collection

CODEX DEV LTD, a Kigali-based software development company, is seeking a full-stack

developer to implement a shopping cart feature in their existing system. The developer will

be responsible for receiving a list of items to be purchased, allowing users to remove items

from the cart, and providing an option to empty the cart entirely. And app must store those

cart information to file named cart.csv The project will be implemented using Python.

Practical assessment

94 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

References

James, G., Wi en, D., Has e, T., & Tibshirani, R. (2017). An Introduction to Statistical Learning:

with Applications in R. Springer

LazyProgrammer. (2016). Deep Learning: Recurrent Neural Networks in Python: LSTM, GRU,

and more RNN machine learning architectures in Python and Theano (Machine Learning in

Python).

Mar n, K., Hi mana, E., Ngabonziza, J., Hanyurwimfura, D., Musabe, R., Uwamahoro, A., . . .

Mutonga, K. (2023). Crop Yield Prediction Using Machine Learning Models: Case of Irish

Potato and Maize. Agriculture, 20.

Moolayil, J. J. (2019). Learn Keras for Deep Neural Networks: A Fast-Track Approach to

Modern Deep Learning with Python.

Morgan, P. (2018). Data Analysis from Scratch With Python: Beginner Guide, Pandas,

NumPy, Scikit-Learn, IPython, TensorFlow, and Matplotlib.

Russell, R. (2018). Machine Learning: Step-by-Step Guide To Implement Machine Learning

Algorithms with Python.

Sarkar, D., Raghav, B., & Tushar, S. (2017). Practical Machine Learning with Python: A

Problem-Solver’s Guide to Building Real-World Intelligent Systems.

95 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Learning Outcome 3: Apply Object-Driven In Python

96 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative contents

3.1 Applying OOP Concepts

3.2 Applying python Date and time concepts

3.3 Applying Python Libraries

3.4 Applying system Automation

Key Competencies for Learning Outcome 3: Apply object-driven in python

Knowledge Skills Attitudes

● Description of date

and time

● Description of

Python Library

● Understanding

Scope of library

according to the

name space

● Identification of

tasks to automate

● Identification of

tasks to be

prioritized

● Applying OOP

Concepts

● Setting Time

zones

● Formatting and

parsing

● Performing

relative

timedeltas

● Using python

libraries

● Selecting Python

Automation

Library

● Developing

Python Script

● Integrating script

with Deployment

Process

● Testing and

Monitoring the

automated task

● Having

teamwork spirit

ability

● Being critical

thinker

● Being

innovative

● Being attentive

● Being creative

● Problem solving

● Being practical

oriented

97 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Duration: 20 hrs

Learning outcome 3 objectives:

By the end of the learning outcome, the trainees will be able to:

1. Describe correctly date and time as according to python standards

2. Describe correctly Python Library in accordance with python standards

3. Understand correctly Scope of library according to the name space

4. Identify clearly tasks to automate based on specific task

5. Identify correctly tasks to be prioritized based on specific task

6. Apply correctly OOP Concepts in line with python standards

7. Set properly Time zones in line with python standards

8. Use correctly python libraries in accordance with python standards

9. Select correctly Python Automation Library based on specific task

10. Develop correctly Python Script based on specific task to be automated

11. Integrate properly script with Deployment Process based on specific task

12. Test and monitor correctly automated task in accordance with python standards

Resources

Equipment Tools Materials

● Computer ● Python (latest and

stable version)

● IDE (Jupyter

notebook)

● Internet

98 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 3.1: Applying OOP Concepts

1: You are requested to answer the following questions related to the introduction to Object

Oriented Programming:

Describe the following terms as applied in OOP:

i. Object

ii. Python class

iii. Inheritance

iv. Polymorphism

v. Encapsulation

2: Write your findings on paper/flipchart

3: Present your findings to the whole class or trainer

4: For more clarification read key reading 3.1.1 and ask questions where necessary.

Key readings 3.1.1. Description of OOP concepts

1. Object

Python is an object-oriented programming language.

Almost everything in Python is an object, with its properties and methods.

2. Python class

A Class is like an object constructor, or a "blueprint" for creating objects.

To create a class, use the keyword class:

Example

Create a class named MyClass, with a property named x:

class MyClass:

 x = 5

Create Object

Now we can use the class named MyClass to create objects:

Example

Create an object named p1, and print the value of x:

p1 = MyClass()

print(p1.x)

The __init__() Function

Duration: 5 hrs

Theoretical Activity 3.1.1: Description of OOP concepts

Tasks:

99 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

The examples above are classes and objects in their simplest form, and are not

really useful in real life applications.

To understand the meaning of classes we have to understand the built-in

__init__() function.

All classes have a function called __init__(), which is always executed when the

class is being initiated.

Use the __init__() function to assign values to object properties, or other

operations that are necessary to do when the object is being created:

3. Inheritance

3.1. Definition

Inheritance in Python is a fundamental concept in object-oriented programming

that allows a class (known as a subclass or derived class) to inherit attributes

and methods from another class (known as a superclass or base class).

This mechanism promotes code reuse and establishes a natural hierarchy

between classes.

Inheritance in Python is a fundamental concept of object-oriented programming

(OOP) that allows a new class (child class) to inherit the properties and

behaviors (attributes and methods) from an existing class (parent class).

This promotes code reusability and hierarchy, as the child class can extend or

override the functionalities of the parent class. In Python, inheritance is defined

by passing the parent class as an argument to the child class.

There are several types of inheritance, such as single, multiple, multilevel, and

hierarchical inheritance.

Inheritance allows us to define a class that inherits all the methods and

properties from another class.

Parent class is the class being inherited from, also called base class.

Child class is the class that inherits from another class, also called derived class.

3.2. Key Features of Inheritance

 Code Reusability: Inheritance allows subclasses to use methods and properties

of the superclass, reducing redundancy.

 Method Overriding: A subclass can provide a specific implementation of a

method that is already defined in its superclass.

 Multiple Inheritance: Python supports multiple inheritance, allowing a subclass

to inherit from more than one superclass.

 Types of Inheritance

 Single Inheritance: A subclass inherits from one superclass.

100 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

class Animal:

 def speak(self):

 return "Animal speaks"

class Dog(Animal):

 def speak(self):

 return "Bark"

dog = Dog()

print(dog.speak()) # Output: Bark

Multiple Inheritance: A subclass inherits from multiple superclasses.

class Flyer:

 def fly(self):

 return "Flying"

class Swimmer:

 def swim(self):

 return "Swimming"

class Duck(Flyer, Swimmer):

 pass

duck = Duck()

print(duck.fly()) # Output: Flying

print(duck.swim()) # Output: Swimming

Multilevel Inheritance: A class inherits from a subclass, creating a chain of

inheritance.

class Animal:

 def speak(self):

 return "Animal speaks"

class Dog(Animal):

 def bark(self):

 return "Bark"

class Puppy(Dog):

101 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 def weep(self):

 return "Wee wee"

puppy = Puppy()

print(puppy.speak()) # Output: Animal speaks

print(puppy.bark()) # Output: Bark

Hierarchical Inheritance: Multiple subclasses inherit from a single superclass.

class Shape:

 def area(self):

 return "Area calculation"

class Circle(Shape):

 def area(self):

 return "Area of Circle"

class Square(Shape):

 def area(self):

 return "Area of Square"

circle = Circle()

square = Square()

print(circle.area()) # Output: Area of Circle

print(square.area()) # Output: Area of Square

4. Polymorphism

4.1. Definition

 Polymorphism in Python is a core concept in object-oriented programming that

allows objects of different classes to be treated as objects of a common superclass. It

enables methods to do different things based on the object it is acting upon, even if

they share the same name.

4.2. Types of Polymorphism

Method Overriding: A subclass can provide a specific implementation of a method

that is already defined in its superclass.

class Animal:

 def sound(self):

 return "Some sound"

class Dog(Animal):

 def sound(self):

102 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 return "Bark"

class Cat(Animal):

 def sound(self):

 return "Meow"

def make_sound(animal):

 print(animal.sound())

make_sound(Dog()) # Output: Bark

make_sound(Cat()) # Output: Meow

4.3. Duck Typing:

In Python, the type or class of an object is less important than the methods it defines.

If an object behaves like a certain type (i.e., has the necessary methods), it can be

used as that type.

class Bird:

 def fly(self):

 return "Flying"

class Airplane:

 def fly(self):

 return "Jetting through the sky"

def let_it_fly(flyable):

 print(flyable.fly())

let_it_fly(Bird()) # Output: Flying

let_it_fly(Airplane()) # Output: Jetting through the sky

4.4. Benefits of Polymorphism

 Flexibility: Functions or methods can operate on objects of different types.

 Code Reusability: Common interfaces can be used across different classes.

 Simplification: Code becomes easier to read and maintain by using a consistent

interface.

5. Encapsulation

5.1. Definition

Encapsulation in Python is an object-oriented programming principle that restricts

direct access to certain components of an object. This is done to protect the internal

103 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

state of the object and to control how data is accessed and modified. Encapsulation

promotes modularity and helps maintain the integrity of the data within an object.

5.2. Key Features of Encapsulation

 Data Hiding: By restricting access to some of an object's attributes,

encapsulation helps prevent unintended interference and misuse of the data.

This is typically achieved using private or protected access modifiers.

 Controlled Access: Encapsulation allows the use of getter and setter methods

to access and modify private attributes, enabling validation and control over

how data is manipulated.

 Improved Maintainability: With encapsulation, changes to the internal

implementation of a class can be made without affecting external code that

relies on it.

 Implementation of Encapsulation in Python

 In Python, encapsulation is implemented through naming conventions:

 Public Attributes: Accessible from outside the class.

 Protected Attributes: Indicated by a single underscore (_), suggesting that they

should not be accessed directly outside the class.

 Private Attributes: Indicated by a double underscore (__), making them harder

to access from outside the class.

class BankAccount:

 def __init__(self, owner, balance=0):

 self.owner = owner # Public attribute

 self.__balance = balance # Private attribute

 def deposit(self, amount):

 if amount > 0:

 self.__balance += amount

 print(f"Deposited: {amount}")

 else:

 print("Deposit amount must be positive.")

 def withdraw(self, amount):

 if 0 < amount <= self.__balance:

 self.__balance -= amount

 print(f"Withdrew: {amount}")

 else:

 print("Insufficient funds or invalid amount.")

104 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 def get_balance(self):

 return self.__balance

Usage

account = BankAccount("Alice", 100)

account.deposit(50) # Deposited: 50

print(account.get_balance()) # Output: 150

account.withdraw(30) # Withdrew: 30

print(account.get_balance()) # Output: 120

Attempting direct access to the private attribute

print(account.__balance) # AttributeError

1. Read key reading 3.1.2

As a full stack developer, you have been asked to develop a python program to perform

simple calculation (add, substract, divide and multiply). That program have to let

numbers to be entered by user using keyboard, and after entering numbers it have to let

user to select the operation to be performed and display the results according to

selected operation.

2. Apply safety precautions.

3. Referring to the steps provided in key readings 3.1.2, develop the required program.

4. Present out the steps to be followed.

Key readings 3.1.2 Application of classes and objects

1. Introduction

Classes and objects in Python enable developers to model real-world entities and

their behavior. This object-oriented approach promotes code organization,

reusability, and abstraction.

2. Application of classes and object

Here are some common applications of classes and objects, along with examples.

2.1. Modeling Real-World Entities

Classes can represent real-world entities with attributes and methods.

Practical Activity 3.1.2: Applying of classes and objects

Task:

105 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Example: Car Class

class Car:

 def __init__(self, make, model, year):

 self.make = make

 self.model = model

 self.year = year

 def display_info(self):

 return f"{self.year} {self.make} {self.model}"

Creating an object of the Car class

my_car = Car("Toyota", "Corolla", 2020)

print(my_car.display_info()) # Output: 2020 Toyota Corolla

2.2. Encapsulation

Classes can encapsulate data and provide controlled access through methods.

Example: Bank Account

class BankAccount:

 def __init__(self, owner, balance=0):

 self.owner = owner

 self.__balance = balance # Private attribute

 def deposit(self, amount):

 if amount > 0:

 self.__balance += amount

 def withdraw(self, amount):

 if 0 < amount <= self.__balance:

 self.__balance -= amount

 def get_balance(self):

 return self.__balance

Creating a bank account object

account = BankAccount("Alice", 100)

account.deposit(50)

print(account.get_balance()) # Output: 150

2.3. Inheritance

Classes can inherit attributes and methods from other classes, promoting code reuse.

Example: Employee and Manager Classes

class Employee:

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 def display_info(self):

 return f"Employee: {self.name}, Salary: {self.salary}"

106 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

class Manager(Employee):

 def __init__(self, name, salary, department):

 super().__init__(name, salary)

 self.department = department

 def display_info(self):

 return f"Manager: {self.name}, Salary: {self.salary}, Department:

{self.department}"

Creating objects

emp = Employee("John", 50000)

mgr = Manager("Alice", 70000, "HR")

print(emp.display_info()) # Output: Employee: John, Salary: 50000

print(mgr.display_info()) # Output: Manager: Alice, Salary: 70000,

Department: HR

2.4. Polymorphism

Classes can define methods with the same name, allowing different behaviors based

on the object type.

Example: Shape Class

class Shape:

 def area(self):

 pass

class Rectangle(Shape):

 def __init__(self, width, height):

 self.width = width

 self.height = height

 def area(self):

 return self.width * self.height

class Circle(Shape):

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return 3.14 * (self.radius ** 2)

Function to calculate area

def print_area(shape):

 print(f"Area: {shape.area()}")

Creating objects

rect = Rectangle(10, 5)

circle = Circle(7)

print_area(rect) # Output: Area: 50

print_area(circle) # Output: Area: 153.86

107 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

2.5. Creating Frameworks and Libraries

Classes allow for the creation of modular code that can be reused across different

projects.

Example: Simple Web Framework

class WebApp:

 def __init__(self, name):

 self.name = name

 self.routes = {}

 def route(self, path):

 def wrapper(func):

 self.routes[path] = func

 return func

 return wrapper

 def run(self):

 for path, func in self.routes.items():

 print(f"Route: {path}, Response: {func()}")

Creating a web app object

app = WebApp("MyApp")

@app.route("/")

def home():

 return "Welcome to the homepage!"

@app.route("/about")

def about():

 return "This is the about page."

Running the web app

app.run()

Output:

Route: /, Response: Welcome to the homepage!

Route: /about, Response: This is the about page.

Sample program of simple calculator in python that can perform simple calculation:

class Calculator:

 def add(self, a, b):

 return a + b

 def subtract(self, a, b):

 return a - b

 def multiply(self, a, b):

108 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 return a * b

 def divide(self, a, b):

 if b == 0:

 return "Cannot divide by zero!"

 return a / b

User input for numbers

a = float(input("Enter the first number: "))

b = float(input("Enter the second number: "))

Creating an object of the Calculator class

calc = Calculator()

Display possible operations

print("\nChoose an operation:")

print("1. Add")

print("2. Subtract")

print("3. Multiply")

print("4. Divide")

User chooses an operation

operation = input("Enter the operation number (1/2/3/4): ")

Perform the chosen operation and display the result

if operation == '1':

 result = calc.add(a, b)

 print(f"The result of {a} + {b} is: {result}")

elif operation == '2':

 result = calc.subtract(a, b)

 print(f"The result of {a} - {b} is: {result}")

elif operation == '3':

 result = calc.multiply(a, b)

 print(f"The result of {a} * {b} is: {result}")

elif operation == '4':

 result = calc.divide(a, b)

 print(f"The result of {a} / {b} is: {result}")

else:

 print("Invalid operation. Please enter a number between 1 and 4.")

The output of that program

109 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read key reading 3.1.3

2. As a full stack developer, you have been asked to develop a python program to

perform bank transactions including deposit and withdraw, for withdrow you cannot

let the account to be empty means it have to let 100 Rfw on the account and for all

transactions it have to display the messages.

3. Apply safety precautions.

4. Referring to the steps provided in key readings, develop the required program.

5. Present out the steps to be followed.

Key readings 3.1.3: Applying inheritance in python

Application of inheritance in python

Inheritance in Python is a powerful feature that allows one class (the subclass) to

inherit attributes and methods from another class (the superclass). This promotes

code reuse, simplifies maintenance, and creates a clear hierarchical relationship

between classes.

Here are some common applications of inheritance in Python, along with examples.

1. Code Reusability

Inheritance enables subclasses to use existing code from superclasses, reducing

redundancy.

Practical Activity 3.1.3: Applying inheritance in python

Task:

110 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Example: Basic Shapes

class Shape:

 def area(self):

 pass

class Rectangle(Shape):

 def __init__(self, width, height):

 self.width = width

 self.height = height

 def area(self):

 return self.width * self.height

class Circle(Shape):

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return 3.14 * (self.radius ** 2)

Using the classes

shapes = [Rectangle(10, 5), Circle(7)]

for shape in shapes:

 print(f"Area: {shape.area()}")

2. Method Overriding

Subclasses can provide specific implementations of methods defined in their

superclasses.

Example: Employees

class Employee:

 def calculate_salary(self):

 return 50000

class Manager(Employee):

 def calculate_salary(self):

 return super().calculate_salary() + 20000 # Base salary + bonus

class Developer(Employee):

 def calculate_salary(self):

 return super().calculate_salary() + 10000 # Base salary + bonus

Using the classes

employees = [Manager(), Developer()]

for emp in employees:

 print(f"Salary: {emp.calculate_salary()}")

3. Creating a Hierarchical Structure

111 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Inheritance allows the creation of a hierarchy where subclasses can inherit from a

common superclass.

Example: Animal Kingdom

class Animal:

 def speak(self):

 return "Some sound"

class Dog(Animal):

 def speak(self):

 return "Bark"

class Cat(Animal):

 def speak(self):

 return "Meow"

Using the classes

animals = [Dog(), Cat()]

for animal in animals:

 print(animal.speak())

4. Multiple Inheritance

Python supports multiple inheritance, allowing a subclass to inherit from multiple

superclasses.

Example: Vehicles

class Flyer:

 def fly(self):

 return "Flying"

class Swimmer:

 def swim(self):

 return "Swimming"

class Duck(Flyer, Swimmer):

 def quack(self):

 return "Quack!"

Using the class

duck = Duck()

print(duck.fly()) # Output: Flying

print(duck.swim()) # Output: Swimming

print(duck.quack()) # Output: Quack!

5. Framework and Library Development

Inheritance allows for the creation of extensible frameworks where users can

subclass base classes to implement specific functionality.

Example: GUI Framework

112 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

class Widget:

 def draw(self):

 pass

class Button(Widget):

 def draw(self):

 return "Drawing a button"

class TextBox(Widget):

 def draw(self):

 return "Drawing a text box"

Using the classes

widgets = [Button(), TextBox()]

for widget in widgets:

 print(widget.draw())

Python program for bank account management

Base class for a bank account

class BankAccount:

 def __init__(self, owner, balance=0):

 # Initialize the account with owner and starting balance

 self.owner = owner

 self.balance = balance

 def deposit(self, amount):

 # Add amount to the balance

 self.balance += amount

 return f"Deposited {amount}. New balance: {self.balance}"

 def withdraw(self, amount):

 # Calculate the maximum amount that can be withdrawn

 if self.balance - amount < 100:

 max_withdrawable = self.balance - 100

 return f"You can only withdraw up to {max_withdrawable}."

 self.balance -= amount

 return f"Withdrew {amount}. New balance: {self.balance}"

Derived class for a savings account

class SavingsAccount(BankAccount):

 def __init__(self, owner, balance=0, interest_rate=0.02):

 # Initialize the savings account with owner, balance, and interest

rate

 super().__init__(owner, balance) # Call the constructor of the

base class

113 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 self.interest_rate = interest_rate

 def apply_interest(self):

 # Apply interest to the current balance

 interest = self.balance * self.interest_rate

 self.balance += interest

 return f"Interest applied. New balance: {self.balance}"

Derived class for a checking account

class CheckingAccount(BankAccount):

 def __init__(self, owner, balance=0, overdraft_limit=100):

 # Initialize the checking account with owner, balance, and

overdraft limit

 super().__init__(owner, balance)

 self.overdraft_limit = overdraft_limit

 def withdraw(self, amount):

 # Calculate the maximum amount that can be withdrawn

 if self.balance - amount < 100:

 max_withdrawable = self.balance - 100

 return f"You can only withdraw up to {max_withdrawable}."

 # Allow withdrawal up to the overdraft limit

 if amount > self.balance + self.overdraft_limit:

 return "Insufficient funds, even with overdraft."

 self.balance -= amount

 return f"Withdrew {amount}. New balance: {self.balance}"

User input for account details

owner = input("Enter the account owner's name: ")

initial_balance = float(input("Enter the initial balance: "))

Ensure the initial balance is above 100

while initial_balance <= 100:

 print("Initial balance must be greater than 100.")

 initial_balance = float(input("Enter the initial balance: "))

Choose account type

account_type = input("Enter account type (savings/checking):

").lower()

114 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Creating an object of the appropriate account class

if account_type == 'savings':

 account = SavingsAccount(owner, initial_balance)

elif account_type == 'checking':

 account = CheckingAccount(owner, initial_balance)

else:

 print("Invalid account type. Defaulting to BankAccount.")

 account = BankAccount(owner, initial_balance)

User operations

while True:

 action = input("Do you want to deposit, withdraw, or apply

interest? (d/w/i/q): ").lower()

 if action == 'd':

 amount = float(input("Enter amount to deposit: "))

 print(account.deposit(amount))

 elif action == 'w':

 amount = float(input("Enter amount to withdraw: "))

 print(account.withdraw(amount))

 elif action == 'i' and isinstance(account, SavingsAccount):

 print(account.apply_interest())

 elif action == 'q':

 break

 else:

 print("Invalid option. Please try again.")

Output of the program

115 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read key reading 3.1.4

2. As a full stack developer, you have been asked to develop a python program to

perform bank transactions including deposit and withdraw, for withdrow you cannot

let the account to be empty means it have to let 100 Rfw on the account and for all

transactions it have to display the messages the program have to include the

application of polymorphism.

3. Apply safety precautions.

4. Referring to the steps provided in key readings, develop the required program.

5. Present out the steps to be followed.

Key readings 3.1.4 Applying polymorphism in python

1. Introduction

Polymorphism in Python is a powerful feature that allows different classes to be

treated as instances of the same class through a common interface. It enables

methods to be defined in multiple forms, allowing for flexible and interchangeable

code.

2. common applications of polymorphism in Python

Here are some common applications of polymorphism in Python, along with examples.

2.1. Method Overriding

Polymorphism allows subclasses to provide specific implementations of methods

defined in their superclasses.

Example: Shape Classes

class Shape:

 def area(self):

 pass

class Rectangle(Shape):

 def __init__(self, width, height):

 self.width = width

 self.height = height

 def area(self):

 return self.width * self.height

class Circle(Shape):

 def __init__(self, radius):

Practical Activity 3.1.4: Applying polymorphism in python

Task:

116 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 self.radius = radius

 def area(self):

 return 3.14 * (self.radius ** 2)

Using polymorphism

shapes = [Rectangle(10, 5), Circle(7)]

for shape in shapes:

 print(f"Area: {shape.area()}")

2.2. Duck Typing

Python’s dynamic typing allows objects to be used based on their behavior rather than

their actual type, a concept known as duck typing.

Example: Flying Objects

class Bird:

 def fly(self):

 return "Flapping wings"

class Airplane:

 def fly(self):

 return "Jetting through the sky"

def let_it_fly(flyable):

 print(flyable.fly())

Using duck typing

let_it_fly(Bird()) # Output: Flapping wings

let_it_fly(Airplane()) # Output: Jetting through the sky

2.3. Operator Overloading

Polymorphism can also be achieved through operator overloading, allowing different

types of objects to interact using standard operators.

Example: Custom Vector Class

class Vector:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __add__(self, other):

 return Vector(self.x + other.x, self.y + other.y)

 def __repr__(self):

 return f"Vector({self.x}, {self.y})"

Using the custom Vector class

117 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

v1 = Vector(2, 3)

v2 = Vector(5, 7)

result = v1 + v2

print(result) # Output: Vector(7, 10)

2.4. Function Overloading

Although Python doesn’t natively support function overloading, polymorphism allows

functions to accept different types of arguments.

Example: Print Function

def print_info(data):

 if isinstance(data, str):

 print(f"String: {data}")

 elif isinstance(data, int):

 print(f"Integer: {data}")

 elif isinstance(data, list):

 print(f"List: {data}")

Using the function

print_info("Hello") # Output: String: Hello

print_info(42) # Output: Integer: 42

print_info([1, 2, 3]) # Output: List: [1, 2, 3]

2.5. Frameworks and Libraries

Polymorphism is widely used in frameworks and libraries, allowing for flexible design

patterns where components can be easily interchanged.

Example: GUI Framework

class Widget:

 def draw(self):

 pass

class Button(Widget):

 def draw(self):

 return "Drawing a button"

class TextBox(Widget):

 def draw(self):

 return "Drawing a text box"

Using the GUI components

widgets = [Button(), TextBox()]

for widget in widgets:

 print(widget.draw())

Example sample library program

118 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

from datetime import datetime

class Book:

 def __init__(self, title, author):

 self.title = title

 self.author = author

 self.is_borrowed = False

 self.borrower_name = None

 self.department = None

 self.rent_date = None

 self.return_date = None

 def borrow(self, borrower_name, department, rent_date, return_date):

 if not self.is_borrowed:

 self.is_borrowed = True

 self.borrower_name = borrower_name

 self.department = department

 self.rent_date = rent_date

 self.return_date = return_date

 return f"You have borrowed '{self.title}' by {self.author}."

 return f"'{self.title}' is already borrowed."

 def return_book(self):

 if self.is_borrowed:

 self.is_borrowed = False

 details = f"Returned '{self.title}' by {self.author}."

 self.borrower_name = None

 self.department = None

 self.rent_date = None

 self.return_date = None

 return details

 return f"'{self.title}' was not borrowed."

 def get_borrow_info(self):

 if self.is_borrowed:

 return (f"Borrower: {self.borrower_name}, "

 f"Department: {self.department}, "

 f"Rent Date: {self.rent_date}, "

 f"Return Date: {self.return_date}")

 return "This book is not currently borrowed."

User input for book details

title = input("Enter the book title: ")

author = input("Enter the author's name: ")

119 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Creating an object of the Book class

book1 = Book(title, author)

User actions

while True:

 action = input("Do you want to borrow or return the book? (b/r/q): ").lower()

 if action == 'b':

 borrower_name = input("Enter your name: ")

 department = input("Enter your department: ")

 rent_date = input("Enter rent date (YYYY-MM-DD): ")

 return_date = input("Enter return date (YYYY-MM-DD): ")

 # Validating date format

 try:

 rent_date = datetime.strptime(rent_date, '%Y-%m-%d').date()

 return_date = datetime.strptime(return_date, '%Y-%m-%d').date()

 print(book1.borrow(borrower_name, department, rent_date, return_date))

 except ValueError:

 print("Invalid date format. Please enter dates in YYYY-MM-DD format.")

 elif action == 'r':

 print(book1.return_book())

 elif action == 'info':

 print(book1.get_borrow_info())

 elif action == 'q':

 break

 else:

 print("Invalid option. Please try again.")

Program output

120 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read key reading 3.1.5

2. As a full stack developer, you have been asked to develop a python program to

perform simple calculation (add, substract, divide and multiply). That program have

to let numbers to be entered by user using keyboard, and after entering numbers it

have to let user to select the operation to be performed and display the results

according to selected operation. In addition, the program have to show the

application of encapsulation

3. Apply safety precautions.

4. Referring to the steps provided in key readings, develop the required program.

5. Present out the steps to be followed.

Key readings 3.1.5 Applying Encapsulation in python

1. Introduction

Encapsulation in Python is a fundamental object-oriented programming principle

that restricts direct access to certain attributes and methods of a class. This approach

is used to protect the internal state of an object and to control how data is accessed

and modified.

2. Common applications of encapsulation in Python

Here are some common applications of encapsulation in Python, along with

examples.

2.1. Data Hiding

Encapsulation helps in hiding the internal state of an object from the outside world,

ensuring that only specified methods can modify it. This prevents unintended

interference and misuse.

Example: Bank Account

class BankAccount:

 def __init__(self, owner, balance=0):

 self.owner = owner

 self.__balance = balance # Private attribute

 def deposit(self, amount):

 if amount > 0:

 self.__balance += amount

 else:

Practical Activity 3.1.5: Applying Encapsulation in python

Task:

121 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 print("Deposit amount must be positive.")

 def withdraw(self, amount):

 if 0 < amount <= self.__balance:

 self.__balance -= amount

 else:

 print("Insufficient funds or invalid amount.")

 def get_balance(self):

 return self.__balance

Usage

account = BankAccount("Alice", 100)

account.deposit(50)

print(account.get_balance()) # Output: 150

account.withdraw(30)

print(account.get_balance()) # Output: 120

2.2. Controlled Access

Encapsulation allows the use of getter and setter methods to control access to

private attributes. This enables validation and ensures that the internal state remains

valid.

Example: Employee Class

class Employee:

 def __init__(self, name, salary):

 self.__name = name

 self.__salary = salary

 def set_salary(self, salary):

 if salary < 0:

 print("Salary must be positive.")

 else:

 self.__salary = salary

 def get_salary(self):

 return self.__salary

Usage

emp = Employee("John", 50000)

print(emp.get_salary()) # Output: 50000

emp.set_salary(-1000) # Output: Salary must be positive.

emp.set_salary(60000)

print(emp.get_salary()) # Output: 60000

122 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

2.3. Implementation Hiding

Encapsulation allows for changes in the internal implementation of a class without

affecting external code that relies on it. This makes the code easier to maintain and

evolve.

Example: Temperature Converter

class Temperature:

 def __init__(self, celsius):

 self.__celsius = celsius # Private attribute

 def to_fahrenheit(self):

 return (self.__celsius * 9/5) + 32

 def to_kelvin(self):

 return self.__celsius + 273.15

Usage

temp = Temperature(25)

print(temp.to_fahrenheit()) # Output: 77.0

print(temp.to_kelvin()) # Output: 298.15

2.4. API Design

Encapsulation is vital in designing APIs, where you can expose a clean interface while

hiding the underlying complexity.

Example: Simple Game

class Game:

 def __init__(self):

 self.__score = 0 # Private attribute

 def increase_score(self, points):

 if points > 0:

 self.__score += points

 def get_score(self):

 return self.__score

Usage

game = Game()

game.increase_score(10)

print(game.get_score()) # Output: 10

2.5. Security

Encapsulation enhances security by restricting access to sensitive data. This is

particularly important in applications handling confidential information.

Example: User Credentials

class User:

 def __init__(self, username, password):

123 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 self.username = username

 self.__password = password # Private attribute

 def authenticate(self, password):

 return self.__password == password

Usage

user = User("Alice", "securepassword")

print(user.authenticate("securepassword")) # Output: True

print(user.authenticate("wrongpassword")) # Output: False

● Object-oriented programming (OOP) is a programming paradigm based on the

concept of "objects," which are instances of classes that encapsulate data and

behaviors.

● Classes serve as blueprints for creating objects, defining attributes and methods.

● Inheritance allows one class (subclass) to inherit properties and methods from

another class (superclass), promoting code reuse and establishing a hierarchical

relationship.

● Polymorphism enables objects of different classes to be treated as instances of a

common superclass, allowing methods to be defined in multiple forms.

● Encapsulation restricts direct access to an object's internal state, exposing only

necessary components through public methods, thereby enhancing data

protection and modularity.

● Together, these concepts form the foundation of OOP, facilitating organized,

reusable, and maintainable code.

● Classes and objects in Python provide a powerful way to model complex systems,

encapsulate data, and promote code reuse. From simple data structures to

complex frameworks, object-oriented programming enhances the clarity and

maintainability of code.

● Classes and object in python are most applicable in different ways like the

followings:In development of calculators programs, In banking transaction

programs and In library management programs

● Inheritance in Python is a powerful feature that allows one class (the subclass) to

inherit attributes and methods from another class (the superclass).

● Common applications of inheritance in Python: Code Reusability, Method

Overriding, Creating a Hierarchical Structure, Multiple Inheritance and Framework

and Library Development.

 Points to Remember

124 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

● Polymorphism in Python is a powerful feature that allows different classes to be

treated as instances of the same class through a common interface.

● Polymorphism can be applied in different ways including: Method Overriding,

Duck Typing, Operator Overloading, Function Overloading and Frameworks and

Libraries

● Encapsulation in Python is a fundamental object-oriented programming principle

that restricts direct access to certain attributes and methods of a class.

● Encapsulation can be used in different ways including: Data Hiding, Controlled

Access, Implementation Hiding, API Design and Security

You are requested to develop a simple bank account transaction python program where there

is application of inheritance the system have to accept to input the account owner and

choose the action to be performed including withdrow, deposit and the system have to show

the amount to be withdrow base on settings of bank.

The program have to include the followings:

 Object

 Class

 Inheritance

 Polymorphism

 Encapsulation

Application of learning 3.1.

125 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 3.2: Applying python Date and Time Concepts

1. You are requested to describe the following date and time concepts in python

programming:

i. Datetime

ii. Dateutil

iii. Arrow

iv. Pendulum

v. Python-tzdata

2. Write your findings on paper/flipchart

3. Present your findings to the whole class or trainer

4. For more clarification read key reading 3.2.1 and ask questions where necessary.

Key readings 3.2.1.: Description of date and time

1. Datetime

The datetime module is part of Python's standard library and provides classes for

manipulating dates and times.

Key Classes

datetime: Combines date and time into a single object.

date: Represents a date (year, month, day).

time: Represents a time (hour, minute, second, microsecond).

timedelta: Represents the difference between two dates or times.

Example:

from datetime import datetime, timedelta

Current date and time

now = datetime.now()

print("Current date and time:", now)

Creating a specific date

new_year = datetime(2024, 1, 1)

print("New Year:", new_year)

Date arithmetic

Duration: 5 hrs

Theoretical Activity 3.2.1: Description of date and time

Tasks:

126 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

tomorrow = now + timedelta(days=1)

print("Tomorrow:", tomorrow)

2. Dateutil

dateutil is a powerful extension to the standard datetime module. It provides

additional features for parsing, formatting, and manipulating dates and times.

Key Features

 Powerful parsing of dates using parse().

 Support for relative deltas (e.g., adding months, years).

 Time zone handling.

Example:

from dateutil import parser, relativedelta

from datetime import datetime

Parsing a date string

date_str = "2024-01-01T12:00:00"

parsed_date = parser.parse(date_str)

print("Parsed Date:", parsed_date)

Adding months

new_date = parsed_date + relativedelta.relativedelta(months=1)

print("One month later:", new_date)

3. Arrow

Arrow is a library that provides a more intuitive way to work with dates and times. It

is designed for better readability and easier manipulation.

Key Features

 Easy timezone handling.

 Human-friendly formatting.

 Natural language support.

Example:

import arrow

Current time

now = arrow.now()

print("Current time:", now)

Shift time

shifted = now.shift(days=3)

print("Three days later:", shifted)

Formatting

formatted = now.format('YYYY-MM-DD HH:mm:ss')

print("Formatted:", formatted)

4. Pendulum

127 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Pendulum is another library for date and time manipulation that focuses on simplicity

and flexibility. It includes features for working with time zones, durations, and

intervals.

Key Features:

 UTC and local time zone support.

 Duration and period handling.

 Human-friendly methods for manipulating dates.

Example:

import pendulum

Current time

now = pendulum.now()

print("Current time:", now)

Adding time

future = now.add(days=7)

print("One week later:", future)

Time zone support

utc_time = pendulum.now('UTC')

local_time = utc_time.in_tz('America/New_York')

print("Local time:", local_time)

5. Python-tzdata

python-tzdata is a library that provides the IANA Time Zone Database, making it

easier to handle time zones in Python applications. It is often used in combination

with datetime or other date libraries.

Key Features:

 Access to time zone data for accurate conversions.

 Works well with pytz for timezone-aware datetime objects.

Example:

import pytz

from datetime import datetime

Time zone conversion

utc_zone = pytz.utc

new_york_zone = pytz.timezone('America/New_York')

Current time in UTC

utc_time = datetime.now(utc_zone)

print("Current UTC time:", utc_time)

Convert to New York time

ny_time = utc_time.astimezone(new_york_zone)

print("New York time:", ny_time)

128 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read the task bellow

As a full stack developer, you are asked to go to the computer lab apply date and

time concepts while performing different operations on date and time calculating

the difference between date, calculating the age depending on current date and

date of birth.

2. Refers to provided key reading 3.2.2, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 3.2.2 Applying python Date and time

1. Python Dates

A date in Python is not a data type of its own, but we can import a module named

datetime to work with dates as date objects.

Example

Import the datetime module and display the current date:

import datetime

x = datetime.datetime.now()

print(x)

1.1. Date Output

When we execute the code from the example above the result will be:

2024-09-10 12:25:43.517354

The date contains year, month, day, hour, minute, second, and microsecond.

The datetime module has many methods to return information about the date

object.

Example

Return the year and name of weekday:

import datetime

x = datetime.datetime.now()

print(x.year)

print(x.strftime("%A"))

1.2. Creating Date Objects

To create a date, we can use the datetime() class (constructor) of the datetime

module.

Practical Activity 3.2.2: Applying python Date and time

Task:

129 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

The datetime() class requires three parameters to create a date: year, month, day.

Example

Create a date object:

import datetime

x = datetime.datetime(2020, 5, 17)

print(x)

The datetime() class also takes parameters for time and timezone (hour, minute,

second, microsecond, tzone), but they are optional, and has a default value of 0,

(None for timezone).

The strftime() Method

The datetime object has a method for formatting date objects into readable strings.

The method is called strftime(), and takes one parameter, format, to specify the

format of the returned string:

Example

Display the name of the month:

import datetime

x = datetime.datetime(2018, 6, 1)

print(x.strftime("%B"))

A reference of all the legal format codes:

Dire

ctive

Description Example code Output

%a Weekday,

short version

import datetime

x =datetime.datetime.now()

print(x.strftime("%a"))

Tuey

%A Weekday,

full version

import datetime

x = datetime.datetime.now()

print(x.strftime("%A"))

Wednes

day

%w Weekday as

a number 0-

6, 0 is

Sunday

import datetime

x = datetime.datetime.now()

print(x.strftime("%w"))

2

%d Day of

month 01-31

import datetime

x = datetime.datetime.now()

print(x.strftime("%d"))

23

%b Month

name, short

version

import datetime

x = datetime.datetime.now()

print(x.strftime("%b"))

Dec

%B Month import datetime Decemb

130 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

name, full

version

x = datetime.datetime.now()

print(x.strftime("%B"))

er

%m Month as a

number 01-

12

import datetime

x = datetime.datetime.now()

print(x.strftime("%m"))

12

%y Year, short

version,

without

century

import datetime

x = datetime.datetime.now()

print(x.strftime("%y"))

18

%Y Year, full

version

import datetime

x = datetime.datetime.now()

print(x.strftime("%Y"))

2018

%H Hour 00-23 import datetime

x = datetime.datetime.now()

print(x.strftime("%H"))

17

%p AM/PM import datetime

x = datetime.datetime.now()

print(x.strftime("%p"))

PM

%x Local version

of date

import datetime

x = datetime.datetime.now()

print(x.strftime("%x"))

12/31/1

8

Setting Time Zones

To work with time zones, you can use the pytz library, which provides access to the

IANA time zone database.

Example:

from datetime import datetime

import pytz

Define time zones

utc_zone = pytz.utc

new_york_zone = pytz.timezone('America/New_York')

Current time in UTC

utc_time = datetime.now(utc_zone)

print("Current UTC time:", utc_time)

Convert to New York time

ny_time = utc_time.astimezone(new_york_zone)

print("New York time:", ny_time)

Get current time in New York

ny_now = datetime.now(new_york_zone)

131 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

print("Current New York time:", ny_now)

2. Formatting and Parsing

You can format and parse dates and times using the strftime and strptime methods

in the datetime module, along with dateutil for more complex parsing.

Example:

from datetime import datetime

from dateutil import parser

Current date and time

now = datetime.now()

Formatting date and time

formatted_now = now.strftime('%Y-%m-%d %H:%M:%S')

print("Formatted current time:", formatted_now)

Parsing a date string

date_str = "2024-01-01 15:30:00"

parsed_date = datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S')

print("Parsed date:", parsed_date)

Parsing using dateutil

date_str2 = "January 1, 2024, 3:30 PM"

parsed_date2 = parser.parse(date_str2)

print("Parsed date with dateutil:", parsed_date2)

3. Performing Relative Timedeltas

You can use the timedelta class from the datetime module to perform arithmetic

with dates and times, allowing you to easily calculate relative dates.

Example:

from datetime import datetime, timedelta

Current date and time

now = datetime.now()

print("Current date and time:", now)

Calculate relative dates

tomorrow = now + timedelta(days=1)

print("Tomorrow:", tomorrow)

next_week = now + timedelta(weeks=1)

print("Next week:", next_week)

Subtracting time

yesterday = now - timedelta(days=1)

print("Yesterday:", yesterday)

132 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Using relativedelta from dateutil for more complex

operations

from dateutil.relativedelta import relativedelta

Adding months and years

next_month = now + relativedelta(months=1)

print("Next month:", next_month)

next_year = now + relativedelta(years=1)

print("Next year:", next_year)

● Python provides robust support for date and time manipulation through its built-

in datetime module and several powerful third-party libraries like dateutil, Arrow,

Pendulum, and python-tzdata.

● The datetime module is part of the standard library and provides classes for

manipulating dates and times. It includes functionalities for creating, formatting,

and performing arithmetic on dates and times.

● Dateutil is a powerful extension of the datetime module that provides additional

features, such as parsing dates from strings and handling time zones. It simplifies

date manipulation with utilities for relative deltas, recurrence rules, and more.

● Arrow is a lightweight library that simplifies working with dates and times in

Python. It provides an intuitive API for creating, formatting, and converting dates,

along with built-in timezone handling and human-friendly features.

● Pendulum is a robust datetime library that extends datetime with advanced

features like duration calculations, timezone conversions, and natural language

support. It offers immutable instances, making it easier to work with dates and

times without side effects.

● python-tzdata is a package that provides the IANA time zone database for Python

applications. It allows for accurate timezone conversions and offsets, ensuring

applications handle date and time correctly across different regions.

● In Python, you can effectively manage time zones using pytz, format and parse

dates using strftime and strptime, and perform arithmetic with dates using

timedelta and relativedelta.

 Points to Remember

133 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

As full stack developer you are asked to develop a python program that can be used while

calculating the age of students in order to know if they are allowed to take national id card

depending on entered age and the current date.

The program has to tell user if the entered student is allowed or not.

 Application of learning 3.2.

134 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 3.3: Applying Python Libraries

Duration: 5 hrs

1: You are requested to describe the following python libraries:

i. Matplotlib

ii. Numpy

iii. Pandas

2: Write your findings on paper/flipchart

3: Present your findings to the whole class or trainer

4: For more clarification read key reading 3.3.1 and ask questions where necessary.

Key readings 3.3.1. Description of Python Library

1. Definition

A Python library is a collection of modules that provide reusable code to perform

specific tasks. Libraries can be either part of the standard library (which comes

bundled with Python) or third-party libraries that can be installed via package

managers like pip. Python libraries promote code reuse and modular programming,

making it easier to develop complex applications.

2. Python Standard Library

The Python Standard Library is a collection of modules and packages that come with

Python. It provides a wide range of functionalities, including file I/O, system calls,

data manipulation, and more.

The standard library allows developers to perform common programming tasks

without needing to install additional packages.

Key Features

 Comprehensive documentation.

 Built-in modules for various programming tasks.

 Ensures consistency across Python installations.

3. Matplotlib

Description: Matplotlib is a plotting library for Python that enables the creation of

static, animated, and interactive visualizations. It is highly customizable and works

well with NumPy and Pandas.

Key Features

Theoretical Activity 3.3.1: Description of Python Libraries

Tasks:

135 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Support for a wide variety of plots (line, scatter, bar, histogram, etc.).

 Extensive customization options (colors, labels, fonts).

 Integration with Jupyter notebooks for interactive plotting.

Example:

import matplotlib.pyplot as plt

import numpy as np

Data

x = np.linspace(0, 10, 100)

y = np.sin(x)

Plot

plt.plot(x, y)

plt.title("Sine Wave")

plt.xlabel("X-axis")

plt.ylabel("Y-axis")

plt.grid(True)

plt.show()

4. NumPy

Description: NumPy (Numerical Python) is a library for numerical computing in

Python. It provides support for arrays, matrices, and a wide range of mathematical

functions to operate on these data structures.

Key Features:

 N-dimensional arrays (ndarray) for efficient storage and manipulation.

 Mathematical functions for linear algebra, statistical analysis, and more.

 Broadcasting capabilities for arithmetic operations on arrays of different

shapes.

Example:

import numpy as np

Creating an array

arr = np.array([[1, 2, 3], [4, 5, 6]])

Basic operations

print("Array:\n", arr)

print("Sum:", np.sum(arr))

print("Mean:", np.mean(arr))

print("Transpose:\n", arr.T)

136 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

5. Pandas

Description: Pandas is a powerful data manipulation and analysis library built on top

of NumPy. It provides data structures like Series and DataFrame to handle labeled

data efficiently.

Key Features:

 DataFrame for handling two-dimensional labeled data.

 Powerful data manipulation functions (grouping, merging, reshaping).

 Built-in support for reading and writing data from various file formats (CSV,

Excel, SQL, etc.).

Example:

import pandas as pd

Creating a DataFrame

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'Age': [25, 30, 35],

 'City': ['New York', 'Los Angeles', 'Chicago']

}

df = pd.DataFrame(data)

DataFrame operations

print("DataFrame:\n", df)

print("Mean Age:", df['Age'].mean())

print("Filtered:\n", df[df['Age'] > 28])

1. Read the task bellow

As a full stack developer, you are asked to go to the computer lab to use python

libraries described in key readings 3.3.1.

2. Refers to provided key reading 3.3.2, perform the task described above.

3. Present your work to the trainer and whole class.

Practical Activity 3.3.2: Using python libraries

Task:

137 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Key readings 3.3.2 Using python libraries

1. Importing Libraries

To use any library in Python, you need to import it. This is typically done at the

beginning of your script or notebook.

Example of Importing Libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

 numpy is imported as np for brevity.

 pandas is imported as pd.

 matplotlib.pyplot is imported as plt.

2. Accessing Functionality

NumPy

NumPy provides a powerful array object and a range of functions for numerical

operations.

Example:

Create a NumPy array

array = np.array([1, 2, 3, 4, 5])

Basic operations

mean_value = np.mean(array)

sum_value = np.sum(array)

print("Array:", array)

print("Mean:", mean_value)

print("Sum:", sum_value)

Pandas

Pandas is used for data manipulation and analysis, primarily with its DataFrame

structure.

Example:

Create a DataFrame

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'Age': [25, 30, 35]

}

df = pd.DataFrame(data)

Accessing DataFrame functionalities

mean_age = df['Age'].mean()

filtered_df = df[df['Age'] > 28]

print("DataFrame:\n", df)

print("Mean Age:", mean_age)

138 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

print("Filtered DataFrame:\n", filtered_df)

Matplotlib

Matplotlib is used for creating static, animated, and interactive visualizations.

Example:

Simple plot using Matplotlib

x = np.linspace(0, 10, 100)

y = np.sin(x)

plt.plot(x, y)

plt.title("Sine Wave")

plt.xlabel("X-axis")

plt.ylabel("Y-axis")

plt.grid(True)

plt.show()

3. Understanding Scope According to the Namespace

In Python, a namespace is a container that holds a set of identifiers (names) and

ensures that all names are unique within that namespace. When you import

libraries, their functions and classes are accessible within the current namespace.

Example of Scope and Namespace

Importing libraries

import numpy as np

import pandas as pd

Defining a function that uses NumPy

def calculate_statistics(data):

 mean = np.mean(data)

 return mean

Using the function

data_array = np.array([1, 2, 3, 4, 5])

mean_value = calculate_statistics(data_array)

print("Mean Value:", mean_value)

Accessing a Pandas function directly

df = pd.DataFrame({'A': [1, 2, 3]})

print("DataFrame:\n", df)

Scope Considerations

 Global Scope: Functions and variables defined outside any function have a

global scope and can be accessed anywhere in the file.

 Local Scope: Variables defined inside a function are local to that function and

cannot be accessed outside of it.

 Namespace Access: When you import libraries, you access their functions

using the specified alias (like np for NumPy). If you try to access a function

without the alias, you will get a NameError.

139 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Example of Scope Errors

Attempting to access a function without the namespace

try:

 np.mean([1, 2, 3]) # Correct usage

 mean([1, 2, 3]) # Incorrect, will raise NameError

except NameError as e:

 print(e) # Output: name 'mean' is not defined

● The Python Standard Library provides a robust foundation for programming tasks,

while libraries like Matplotlib, NumPy, and Pandas significantly enhance Python's

capabilities in data visualization, numerical computing, and data analysis.

Together, these libraries make Python a powerful tool for scientific computing,

data analysis, and more.

● To use any library in Python, you need to import it. This is typically done at the

beginning of your script or notebook.

● NumPy provides a powerful array object and a range of functions for numerical

operations.

● Pandas is used for data manipulation and analysis, primarily with its DataFrame

structure.

● Matplotlib is used for creating static, animated, and interactive visualizations.

You’re working for a retail store located in Nyanza District. You are tasked with analysing the

monthly sales data for a retail store. The sales data is manually defined in a Python

dictionary. The objective is to calculate total and average sales, and visualize the sales trend

over the months using Python libraries.

 Points to Remember

Application of learning 3.3.

140 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Indicative content 3.4: Applying System Automation

Duration: 5 hrs

1. You are requested to identify tasks to automate and to be prioritized

2. Write your findings on paper/flipchart

3. Present your findings to the whole class or trainer

4. For more clarification read key reading 3.1.1 and ask questions where necessary.

Key readings 3.4.1.: Identification of tasks to automate and to be

prioritized

1. Identification of Tasks to Automate

1.1. Database Migrations

Automate the process of updating database schemas.

Use tools like Alembic or Django migrations to streamline the transition between

database versions.

1.2. Configuration File Updates

Automate updates to configuration files across environments (e.g., development,

staging, production).

Use scripts or configuration management tools like Ansible or Chef.

1.3. Service Restarts

Automate the restarting of services after deployments or configuration changes.

Implement health checks and automated scripts to ensure services are running as

expected.

1.4. Testing and Verification

Automate unit tests, integration tests, and end-to-end tests.

Use CI/CD tools like Jenkins, GitHub Actions, or Travis CI to run tests automatically

upon code changes.

1.5. Logging and Notifications

Automate the collection and monitoring of logs.

Set up notifications for critical events using tools like Slack, email, or monitoring

dashboards (e.g., Prometheus).

2. Identification of Tasks to Be Prioritized

2.1. Repetitive

Tasks that are performed frequently (e.g., daily, weekly).

Theoretical Activity 3.4.1: Identification of tasks to automate and to be

prioritized

Tasks:

141 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Examples: data backups, report generation, and code deployments.

2.2. Time-Consuming

Tasks that take a significant amount of manual time.

Examples: manual data entry, resource provisioning, and batch processing.

2.3. Error-Prone

Tasks that are susceptible to human error, leading to inconsistencies or failures.

Examples: manual configuration updates, data migrations, and testing processes.

2.4. Critical for Deployment Speed

Tasks that impact the speed and efficiency of the deployment pipeline.

Examples: automated testing and deployment scripts that need to be executed

quickly to reduce downtime.

1. Read the task bellow

As a full stack developer, you are asked to go to the computer lab to install the following

python automation libraries:

i. fabric

ii. ansible

iii. salt

iv. boto3

v. vsphere-automation-sdk

2. Refers to provided key reading 3.4.2, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 3.4.2 Installation of Python Automation Library

1. introduction

When selecting a Python automation library, it's important to consider various factors

such as ease of use, community support, features, and specific use cases. Below is a

comparison of several automation libraries, along with key considerations for each.

1. Fabric

Fabric is a simple and lightweight Python library for streamlining the use of SSH for

application deployment and system administration tasks.

Key Features:

 SSH command execution and file transfer.

Practical Activity 3.4.2: Installing Python Automation Libraries

Task:

142 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Easy to define tasks in Python code.

 Supports task parallelism.

Use Cases:

 Deploying applications to remote servers.

 Running administrative commands across multiple servers.

Considerations:

 Best for small to medium-scale deployments.

 Requires familiarity with SSH.

2. Ansible

Ansible is a powerful automation tool for configuration management, application

deployment, and orchestration, using a simple YAML syntax.

Key Features:

 Agentless architecture.

 Extensive module library for various tasks.

 Strong community and enterprise support.

Use Cases:

 Automating configuration management.

 Orchestrating complex deployments across multiple environments.

Considerations:

 Requires YAML knowledge.

 More suited for larger environments with complex setups.

3. SaltStack

SaltStack is a configuration management and orchestration tool that allows for real-

time automation and monitoring.

Key Features:

 Event-driven automation.

 High scalability with a master-minion architecture.

 Supports a wide range of operating systems.

Use Cases

 Managing large infrastructures.

 Real-time monitoring and automation.

Considerations:

 More complex setup compared to other tools.

 Best for environments requiring real-time updates.

4. Boto3

Boto3 is the Amazon Web Services (AWS) SDK for Python, allowing Python developers

to write software that makes use of AWS services.

Key Features:

 Comprehensive access to AWS services.

 Simple and intuitive API.

143 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Supports resource management and automation.

Use Cases:

 Automating AWS resource provisioning.

 Managing AWS services like S3, EC2, and Lambda.

Considerations:

 Specific to AWS environments.

 Requires understanding of AWS services.

5. vSphere Automation SDK for Python

This SDK provides a Python client for automating VMware vSphere environments,

enabling easy interaction with vSphere APIs.

Key Features:

 Access to vSphere APIs for managing virtualized environments.

 Supports operations such as VM lifecycle management, networking, and

storage.

Use Cases:

 Automating VM provisioning and management.

 Integrating with existing VMware workflows.

Considerations:

 Best suited for organizations using VMware vSphere.

 Requires familiarity with VMware's architecture and APIs.

Factors to Consider

 Ease of Use

How easy is it to get started with the library?

Does it require extensive setup or configuration?

 Community Support

Is there a strong community or documentation available?

Are there frequent updates and active maintenance?

 Features

Does the library provide the necessary features for your specific automation

tasks?

How well does it integrate with other tools or environments?

 Scalability

Can the library handle the scale of your infrastructure?

Is it suitable for both small and large environments?

 Specific Use Cases

Does the library cater to your specific needs (e.g., cloud automation,

configuration management)?

Are there any dependencies on certain platforms or services?

144 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

1. Read the task bellow

As a full stack developer, you are asked to go to the computer lab to develop python

scripts.

2. Refers to provided key reading 3.4.3, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 3.4.3 Developing python script

1. Introduction

Developing a Python script that demonstrates the use of library functions, logical

structuring, and logging. For this example, we'll create a script that automates the

deployment of a simple web application using Fabric for SSH tasks, alongside

logging to track its operations.

Example Script: Web Application Deployment

2. Install Required Library

Ensure you have Fabric installed. You can install it using pip:

pip install fabric

3. Script Structure

The script will:

 Connect to a remote server.

 Upload application files.

 Restart the web server.

 Log the deployment process.

4. Python Script

import logging

from fabric import Connection

Set up logging

logging.basicConfig(

 level=logging.INFO,

 format='%(asctime)s - %(levelname)s - %(message)s',

 handlers=[

 logging.FileHandler("deployment.log"),

 logging.StreamHandler()

]

Practical Activity 3.4.3: Developing python script

Task:

145 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

)

Define the deployment function

def deploy_application(host, user, app_path, remote_path):

 try:

 logging.info("Starting deployment to %s", host)

 # Create a connection to the remote server

 with Connection(host=host, user=user) as conn:

 logging.info("Connected to %s", host)

 # Upload application files

 logging.info("Uploading files from %s to %s", app_path, remote_path)

 conn.put(app_path, remote=remote_path)

 # Restart the web server

 logging.info("Restarting the web server")

 conn.run("sudo systemctl restart apache2") # Change this command

based on your web server

 logging.info("Deployment completed successfully to %s", host)

 except Exception as e:

 logging.error("Deployment failed: %s", e)

Main execution

if __name__ == "__main__":

 # Configuration

 HOST = "your_remote_server_ip"

 USER = "your_username"

 APP_PATH = "./path_to_your_application/*" # Local path to your application

files

 REMOTE_PATH = "/var/www/html" # Remote path where files will be

deployed

 deploy_application(HOST, USER, APP_PATH, REMOTE_PATH)

Breakdown of the Script

5. Logging Setup

The logging module is configured to log messages to both a file (deployment.log)

and the console.

Log levels (INFO, ERROR) help track the flow and any issues.

6. Function Definition

The deploy_application function handles the deployment process.

It connects to the remote server using Fabric, uploads files, and restarts the web

server.

Each step is logged for transparency and debugging.

7. Main Execution Block

146 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

The script's entry point sets configuration variables (host, user, app paths).

It calls the deploy_application function with these variables.

Conclusion

This Python script demonstrates how to use library functions from Fabric, structure

code logically, and implement logging for tracking operations. Adjust the server

commands and paths according to your specific needs to make it functional in your

environment.

1. Read the task bellow

As a full stack developer, you are asked to go to the computer lab to integrate the

developed script on activity 3.4.3 with deployment process.

2. Refers to provided key reading 3.4.4, perform the task described above.

3. Present your work to the trainer and whole class.

Key readings 3.4.4 Integrating script with Deployment Process

Integrating a Python script into a deployment process for system automation involves

several strategies. Below are methods to trigger the script post-deployment, along

with considerations for security and integration into CI/CD pipelines.

Step1 : Trigger Method to Initiate the Python Script Post-Deployment

After the main deployment tasks are completed, the script can be triggered

automatically. This can be done using a simple command in a shell script or a

deployment tool.

Example:

Shell script to deploy an application and trigger the Python script

#!/bin/bash

Deploy the application (pseudo-command)

echo "Deploying application..."

(Your deployment commands here)

Trigger the Python deployment script

python3 deploy_script.py

Step2 : Direct Execution After Deployment Completion

You can directly call the Python script at the end of your deployment process,

ensuring it runs only after the main deployment is successful.

Practical Activity 3.4.4: Integrating script with Deployment Process

Task:

147 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Example in a Shell Script:

After deployment commands

echo "Deployment completed successfully."

python3 deploy_script.py

Step3 : Integration with CI/CD Pipelines

Integrate the Python script into your CI/CD pipeline using tools like Jenkins, GitHub

Actions, or GitLab CI. You can add a step in your pipeline configuration file to run the

script.

Example for GitHub Actions:

name: Deploy Application

on:

 push:

 branches:

 - main

jobs:

 deploy:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout code

 uses: actions/checkout@v2

 - name: Deploy application

 run: |

 # Your deployment commands here

 - name: Run deployment script

 run: python3 deploy_script.py

Step 4 : Scheduled Execution at Specific Intervals

You can schedule the execution of the script using cron jobs on Linux or Task

Scheduler on Windows.

Example of a Cron Job:

Open crontab

crontab -e

Schedule the script to run daily at midnight

0 0 * * * /usr/bin/python3 /path/to/deploy_script.py

2. Implement Security Measures

To ensure that sensitive information is protected and access to the script is

controlled, consider the following measures:

a. Restrict Script Access

File Permissions: Set appropriate file permissions to restrict access to the script.

chmod 700 deploy_script.py # Only the owner can read, write, and execute

User Roles: Limit access to the script to specific user roles that need to execute it.

148 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

b. Environment Variables for Sensitive Information

Store sensitive information (like passwords, API keys) in environment variables

instead of hardcoding them in the script.

Example:

import os

DB_PASSWORD = os.getenv('DB_PASSWORD')

You can set the environment variables in your shell or CI/CD pipeline

configuration.

c. Use Secrets Management Tools

Utilize secrets management tools like HashiCorp Vault, AWS Secrets Manager, or

Azure Key Vault to store and manage sensitive information securely.

Example Using AWS Secrets Manager:

import boto3

Load secret

def get_secret():

 client = boto3.client('secretsmanager')

 secret_value = client.get_secret_value(SecretId='my_secret_id')

 return secret_value['SecretString']

Conclusion

Integrating your Python script into the deployment process can enhance automation

and efficiency. By triggering the script post-deployment, integrating it into CI/CD

pipelines, scheduling it, and implementing robust security measures, you can ensure

a smooth and secure deployment workflow. Always prioritize securing sensitive

information and controlling access to your automation scripts.

1. Read the task bellow

As a full stack developer, you are asked to go to the computer lab to test and

monitor the automated tasks of activity 3.4.4.

2. Refers to provided key reading 3.4.5, perform the task described above.

3. Present your work to the trainer and whole class.

Practical Activity 3.4.5: Testing and monitoring the automated tasks

Task:

149 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Key readings 3.4.5 Testing and monitoring the automated tasks

Approach to testing and monitoring your Python automation scripts, ensuring they

operate effectively and efficiently.

1. Thorough Testing

To ensure your automation script functions as intended, implement various testing

strategies:

a. Unit Testing

Write unit tests for individual functions within your script using the unittest or pytest

frameworks.

Example:

import unittest

from your_script import deploy_application # Import your function

class TestDeployment(unittest.TestCase):

 def test_deploy_application(self):

 # Mock parameters

 host = "test_host"

 user = "test_user"

 app_path = "test_path"

 remote_path = "test_remote_path"

 # Call the function and assert expected results

 result = deploy_application(host, user, app_path, remote_path)

 self.assertIsNone(result) # Assuming the function returns None on success

if __name__ == "__main__":

 unittest.main()

b. Integration Testing

Test the script in a staging environment that mimics production. This will help

identify issues in the interaction between components.

Example:

Deploy to a staging server and run the script, verifying that all steps complete

successfully and the application behaves as expected.

c. End-to-End Testing

Conduct end-to-end tests that cover the entire deployment process, from code

commit to deployment.

2. Monitor Script Logs Execution

Monitoring is crucial for identifying issues and ensuring smooth operation.

Implement logging and monitoring practices:

a. Logging

Use Python’s built-in logging module to record important events, errors, and

execution flow.

150 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Example:

import logging

logging.basicConfig(

 level=logging.INFO,

 format='%(asctime)s - %(levelname)s - %(message)s',

 handlers=[

 logging.FileHandler("deployment.log"),

 logging.StreamHandler()

]

)

Log an example message

logging.info("Starting deployment...")

b. Log Monitoring

Use log monitoring tools like ELK Stack (Elasticsearch, Logstash, Kibana), Splunk, or

Papertrail to analyze logs in real-time.

Set up alerts for errors or critical warnings in your logs.

4. Refine and Improve

Continuous improvement is key to maintaining a robust automation script:

a. Code Review

Regularly review the code for improvements, ensuring it adheres to best practices.

Peer reviews can help catch potential issues and provide feedback for enhancements.

b. Performance Monitoring

Analyze the script’s performance, noting execution time and resource usage.

Use profiling tools like cProfile to identify bottlenecks.

Example:

import cProfile

def main():

 # Your main deployment function

 deploy_application(...)

cProfile.run('main()')

c. Feedback Loop

Collect feedback from users or stakeholders regarding the deployment process.

Identify pain points or areas that require improvement.

d. Regular Updates

Keep dependencies up to date and review the latest features or improvements in

libraries used.

Regularly test the script against new versions of relevant libraries.

Conclusion

By implementing thorough testing, actively monitoring script execution, and refining

151 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

your automation process, you can ensure that your Python scripts remain robust,

efficient, and effective. Continuous improvements based on testing outcomes and

user feedback will help maintain a high level of reliability in your deployment

automation efforts.

Step-by-step guide to testing a Python automation script, complete with a real-life

example that illustrates each step clearly.

Example Scenario: Deploying a Web Application

Assume you have a Python script that automates the deployment of a web

application to a server. The script includes functions for uploading files, restarting

services, and logging actions.

Steps to Follow for Testing

Step 1: Write Unit Tests

Objective: Test individual functions to ensure they work correctly.

Example Function:

def upload_files(local_path, remote_path):

 # Simulate file upload

 if not local_path or not remote_path:

 raise ValueError("Both paths are required")

 return True # Simulate successful upload

Unit Test

import unittest

class TestDeploymentFunctions(unittest.TestCase):

 def test_upload_files_success(self):

 result = upload_files("local/file/path", "remote/file/path")

 self.assertTrue(result)

 def test_upload_files_failure(self):

 with self.assertRaises(ValueError):

 upload_files("", "remote/file/path")

Run the Tests

python -m unittest test_deployment.py

Step 2: Perform Integration Testing

Objective: Test the interaction between components. Ensure that the entire

deployment process works as expected.

Integration Test Example:

class TestDeploymentIntegration(unittest.TestCase):

 def test_deployment_process(self):

 # Simulate the entire deployment process

 result = deploy_application("host", "user", "local/path", "remote/path")

 self.assertIsNone(result) # Assuming it returns None on success

152 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

Run the Tests

python -m unittest test_integration.py

Step 3: Conduct End-to-End Testing

Objective: Test the complete workflow from start to finish in a staging

environment.

Set up a Staging Environment: Create a replica of your production

environment.

Deploy the Application: Run the deployment script in the staging environment.

Verify Functionality: Check that the application is running as expected and all

features work.

Example:

Deploy to staging server

python deploy_script.py

Verify the application

curl http://staging-server-url

Step 4: Monitor Script Logs Execution

Objective: Keep track of the script's execution and identify any issues.

Log Important Events: Use the logging module to capture key actions.

import logging

logging.basicConfig(filename='deployment.log', level=logging.INFO)

logging.info("Starting deployment process.")

Analyze Logs: After running the script, check the logs for any errors or warnings.

cat deployment.log

Step 5: Collect Feedback and Refine

Objective: Gather input from stakeholders and improve the script based on

real-world usage.

Collect User Feedback: After deployment, ask users about their experience.

Identify Pain Points: Look for any issues they encountered during the process.

Make Improvements: Update the script based on feedback.

Example: If users report that the deployment takes too long, you might

optimize file uploads or reduce the number of services restarted.

Step 6: Regular Updates and Regression Testing

Objective: Ensure that updates to the script or dependencies do not introduce

new issues.

Update Dependencies: Periodically check for updates to libraries and tools used

in your script.

Run All Tests: Execute unit, integration, and end-to-end tests after any changes.

python -m unittest discover

Conclusion

By following these steps—writing unit tests, performing integration and end-to-

153 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

end testing, monitoring logs, collecting feedback, and regularly updating your

script—you can ensure a reliable and effective automation process for your

deployment tasks. This structured approach helps identify issues early and

enhances the overall quality of your automation efforts.

● Automating certain tasks can greatly improve efficiency, reduce errors, and speed

up deployment processes.

● By focusing on repetitive, time-consuming, error-prone tasks that are critical for

deployment speed, teams can maximize their productivity and ensure a smoother

workflow.

● Automating these tasks not only saves time but also enhances the reliability of the

development and deployment processes.

● To install python automation libraries you can use “pip install library name” and

remember to replace the library name with the one that you are installing. E.g pip

install fabric, pip install ansible, pip install salt, pip install boto3 and pip install

vsphere-automation-sdk.

● To develop Python scripts effectively, plan your goals, import necessary libraries,

structure your code logically, write functions for reusable code, use library

functions, handle errors, and document your work.

● Consider using a virtual environment to isolate dependencies and leverage

logging for debugging.

● By following these steps and incorporating best practices, you can create efficient,

maintainable, and well-structured Python scripts.

● While Integrating script with Deployment Process you follow the fllowing steps:

Step 1: Trigger method to initiate the Python script post-deployment

Step 2: Direct execution after deployment completion

Step 3: Integration with CI/CD pipelines

Step 4: Scheduled execution at specific intervals

Step 5: Implement security measures to restrict script access and control

sensitive information.

● Selecting the right Python automation library depends on your specific needs,

existing infrastructure, and the complexity of the tasks you want to automate. By

evaluating the features, ease of use, scalability, and community support of each

option, you can make an informed decision that aligns with your automation

goals.

 Points to Remember

154 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

● While testing and monitoring the automated task you have to: Thorough testing,

Monitor script logs execution, Refine and improve.

Manzi as a full-stack developer, has built a web application for BERWA School. After each

deployment of the application, certain tasks must be automated to ensure the application is

correctly configured and ready for use. These tasks include configuring the server, backing

up the database, and sending notifications upon completion. To enhance automation, Manzi

decides to integrate a Python script into the deployment process, ensuring it runs after each

successful deployment and meets necessary security measures. As a full stack developer,

you are tasked to develop python script that will help Manzi to perform the desired

requirements for his system.

Application of learning 3.4.

155 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

 Learning outcome 3 end assessment

I. Match the following terms with their corresponding definitions as applied in

functions:

Answers Items Definitions

……………… 1. Class A. A blueprint for creating objects.

………………. 2. Object B. A specific instance of a class.

……………… 3. Inheritance C. The ability to use a method in different ways.

…………….. 4. Polymorphism D. Restricting access to certain components of an

object.

……………… 5. Encapsulation E. A class from which another class inherits.

……………… 6. Method

Overriding

F. A derived class that inherits properties from

another class.

……………… 7. Constructor G. A method that replaces the implementation of a

method in the superclass.

………………. 8. Data Hiding H. A special method used to initialize objects.

……………… 9. Superclass I. The ability to hide data from outside access.

…………… 10. Subclass J. The mechanism of a class acquiring properties

from another class.

II. Match the following Python libraries with their corresponding primary use cases:

ANSWER Python libraries Primary use cases

………. 1. Matplotlib A. Data manipulation and analysis

………. 2. NumPy B. Numerical operations on arrays and matrices

………. 3. Pandas C. Data visualization

………. 4. Ansible D. Automation and configuration management

………. 5. datetime E. Date and time handling

III. Select the correct answer from the listed one

1. What keyword is used to define a class in Python?

A) define

B) class

C) object

D) function

2. Which of the following allows a class to inherit properties from multiple classes?

A) Single Inheritance

B) Multiple

C) Inheritance

D) Multilevel Inheritance

Written assessment

156 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

E) Hierarchical Inheritance

3. What does the __init__() method do?

A) It creates a new class.

B) It initializes an object's attributes.

C) It defines a new method.

D) It overrides a method.

4. What is the primary benefit of encapsulation?

A) It increases redundancy.

B) It hides the internal state of an object.

C) It allows multiple inheritance.

D) It simplifies code readability.

5. In Python, what is polymorphism primarily used for?

A) To create new classes.

B) To allow different classes to be treated as instances of the same class.

C) To hide data.

D) To define class methods.

IV. State whether the following statements are True or False.

1. An object is an instance of a class.

2. In Python, all classes must inherit from a superclass.

3. Encapsulation allows for direct access to an object's private attributes.

4. Polymorphism can be achieved through method overloading.

5. A subclass can override methods from its superclass.

6. Inheritance promotes code reuse.

7. The self keyword is used to refer to an instance of a class.

8. All attributes in a class are public by default.

9. The __str__() method is used to represent an object as a string.

10. Method overloading is directly supported in Python.

6. Complete the following sentences with correct keyword chosen in box below .

(class, inheritance, class, constructor, Method overriding , encapsulation,

object, hierarchical, polymorphism, Encapsulation)

1. A __________ is a blueprint for creating objects in Python.

2. The process of a class inheriting properties from another class is called __________.

3. In Python, you use the keyword __________ to define a class.

4. The __________ method is automatically called when an object is created.

5. __________ allows a subclass to provide a specific implementation of a method

defined in its superclass.

6. Data hiding is a feature of __________ that restricts direct access to some attributes.

7. A __________ is an instance of a class.

8. Inheritance allows for the creation of a __________ structure among classes.

157 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

9. The ability to treat objects of different classes as objects of a common superclass is

known as __________.

10. __________ is achieved when a subclass inherits methods and properties from a

superclass.

As a full stack devoloper, you have been assigned the task of developing and managing a

Health Management System for GIRUBUZIMA HOSPITAL. The system will handle patient

data, automate deployment tasks, and analyze health trends to ensure smooth operation

and efficient service delivery. This project involves applying concepts from Object-Oriented

Programming (OOP), date and time handling, Python libraries, and automation of post-

deployment tasks.

Tasks:

1. Create a Patient class with attributes like name, age, gender, and disease.

2. Create specialized classes like in_patient and Outpatient inheriting from Patient.

3. Use methods that behave differently based on patient type.

4. Keep patient information private and control access through methods.

5. Ensure records are aligned with Rwanda’s timezone (Central Africa Time).

6. Format timestamps for patient records.

7. Calculate days between tests and monitor recovery progress.

8. Visualize patient recovery trends.

9. Perform statistical operations on patient records.

10. Manage large datasets with patient info.

11. Use Fabric or Ansible to automate deployment-related tasks such as restarting

services and updating configurations

Practical assessment

158 | P y t h o n P r o g r a m m i n g F u n d a m e n t a l s – T r a i n e e M a n u a l

References

Alpaydin, E. (2020). Introduction to Machine Learning (Adaptive Computation and

Machine Learning series). MIT Press.

Bishop, C. Ms. (2006). Pa ern Recognition and Machine Learning. Springer.

Chollet, F. (2017). Deep Learning with Python. Manning Publications.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep Learning (Adaptive

Computation and Machine Learning series). MIT Press.

Has e, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

Mm, YYY

October 2024

